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SUMMARY

We report on our information-theory based tuning approach (partly discussed in [3]) of the so-called Cascade [1] protocol to achieve very small leakage: We prove that powers of two are optimal values for the
number of bits in the initial blocks (Box 3). This confirms and explains results of recent numerical optimizations [2]. Bits are corrected separately according to their individual error probability in the second pass
(round); corrected bits are fully taken into account (Box 4). Simulation results for efficiency and throughput of these optimizations are shown in Box 5&6. A significant improvement for the efficiency is obtained,
although at a highly increased number of exchanged messages. Also in Box 5&6 variants with still very high efficiency but also high throughout are shown.
The leakage is for block sizes of 216 typically only 2.5% above the Shannon limit, and notably, this holds for an error rate p between 1% and 50%. For p between 1% and 6% the leakage is only 2% above the
Shannon limit. As comparison, the leakage of the original Cascade algorithm is 20% (40%) above the Shannon limit for a p of 10% (35%).

1 INFORMATION RECONCILIATION (IR)

Description
� Alice and Bob hold raw keys x , y ∈ {0, 1}n distributed

according to (PXY )
×n.

Here we assume that y can be seen as the result of
transmitting x over n identical binary symmetric
channels with cross-over probability p, i.e. BSC(p).

� Two-way IR: Alice and Bob exchange a series of messages T = {T1, . . . ,Tm}, Bob constructs
an estimate x̃ of x .

Efficiency of Information Reconciliation
� Two different definitions for efficiency are in use: h2(p) = −p log2 p − (1 − p) log2(1 − p)

� Efficiency βIR is defined as ratio of the
maximal length of the secret key (taking
into account the leakage) and the
capacity of the BSC(p):

βIR =
n − ����IR

n(1 − h2(p))

� Efficiency ηIR is defined as ratio of
number of transmitted bits and the
(asymptotic) minimum of the leakage
(Shannon limit):

ηIR =
����IR
nh2(p)

Motivation for this work
Reducing the leakage ����IR increases the length of the secret key in key agreement. (The leakage
is hard to calculate but we can use m, the number of transmitted bits, as an upper bound.)

2 INFORMATION THEORETIC APPROACH FOR IMPROVING THE EFFICIENCY

Main Idea
Transmit only bits without or with little redundancy (entropy close to one). This means, the
conditional probability of (most) transmitted bits to be a one given the values of all previously
transmitted bits must be (close to) 1

2.

A-priori probabilities that Alice’s and Bob’s parity bits are equal or not equal are given by

p�����
��������

(ki , p) := Pr
{

h · x=�=h · y
}
=

1 +− (1 − 2p)ki

2
>
<

1
2
. h ... parity check row, see Box 3

Information per parity bit: H(h · x |h · y) = h2(p�����(ki , p)).
To get efficient coding: H(h · x |h · y) ≈ 1 ⇐⇒ p�����(ki , p) ≈ 1

2 ⇐⇒ ki must be “large enough”.

3 DICHOTOMIC SEARCHES IN BLOCKS WITH DIFFERENT PARITY

A single parity (bisection step)

h =

(
. . .

ki︷ ︸︸ ︷
0 . . . 0

ki︷ ︸︸ ︷
1 . . . 1

ki︷ ︸︸ ︷
0 . . . 0 . . .

)
→ h′ =

(
. . .

ki︷ ︸︸ ︷
0 . . . 0

	ki/2
︷ ︸︸ ︷
1 . . . 1

�ki/2�︷ ︸︸ ︷
0 . . . 0

ki︷ ︸︸ ︷
0 . . . 0 . . .

)
ki is even, different parity

Pr
{

h′ · x = h′ · y |h · x �=h · y
}
= Pr

{
h′ · x �= h′ · y |h · x �=h · y

}
=

1
2

=⇒ H(h′ · x |h · x �=h · y ,h′ · y) = 1.

A complete dichotomic search to find a faulty bit

ki is a power of two
by induction⇐=======⇒ all parities fulfill H = 1.

ki is even, same parity

H(h′ · x |h · x = h · y ,h′ · y) < 1 because Pr
{

h′ · x=�=h′ · y |h · x = h · y
}
=

p2
�����
��������

(n, p)

p�����(2n, p)
>
<

1
2
.

ki is odd
For odd ki and same or different parity and general p always H < 1.

Optimality condition for block size

To obtain parity bits without redundancy it is necessary and sufficient to divide blocks with different
parity that have a size ki which is a power of two.

4 CATEGORISATION AND FURTHER EFFICIENCY IMPROVEMENTS

Dichotomic Searches
� Recursively dividing only blocks with odd parity we localize one faulty bit.
� What about blocks with same parity? Not used so far.

Analysis of Blocks with Same Parity
� Starting with k1 = 2K , approximately in 50% of the cases Alice’s and Bob’s blocks have the

same parity.
� During the dichotomic search in each 2K -block with different parity we learn K − 1 blocks that

have same parity (with sizes 2K−1, 2K−2, . . . , 21).
� Conditional bit error probability in a block of size k with same parity

pbit(k , p|h · x = h · y) = p
p��������(k − 1, p)

p�����(k , p)
.

k pbit(k , 0.06|h · x = h · y)
2 0.004
4 0.012
8 0.026

16 0.045

Using the Information in Blocks with
Same Parity (Categorisation)

� The bit error probability is non-uniformly
distributed before the second pass!

� The original Cascade protocol performs
random shuffling in each pass.

� We put bits in different categories CK according to pbit(2K , p|h · x = h · y).
� Instead of using one block size k2, we choose the block size k2,K individually in each category
CK (k2,K is always a power of two).

Keeping a Record of All Corrected Bits
� For each bisection step in a block with different parity, first check if one of the halves consists

only of already corrected bits. If this is the case, the parity for this half is equal for Alice and Bob,
and that for the other half is different =⇒ need not transmit parity of neither half.

� Same argument for initialisation of a new pass: If a block consists only of previously corrected
bits, its parity must be the same for Alice and Bob, so it need not be exchanged.

5 IMPROVING THROUGHPUT
Different variants of the cascade protocol were tested. The most efficient variant (var. (1), see Box 6)
was modified to achieve higher throughput at the cost of little lower efficiency βIR. In var. (2) to (4),
number of passes was 14. For var. (3) and (4), k2 = min

(
2�(�log2(1/p)−0.5�+12)/2�, n/2

)
. Other ki

values as for var. (1) (see Box 6).
protocol record corrected bits simultaneous bisection categorisation permutations
var. (1) all no yes Fisher-Yates shuffle
var. (2) only current pass yes yes Knuth shuffle
var. (3) none yes no Knuth shuffle
var. (4) only current pass yes no i 
→ (ai + b) mod n

Table: Cross-over probability p, efficiency βIR and throughput for different protocol variants and selected block sizes n

var. (2), n = 214 var. (3), n = 214 var. (4), n = 224

p βIR

throughput
(Mbit/s) βIR

throughput
(Mbit/s) βIR

throughput
(Mbit/s)

throughput
(Mbit/s)

latency 1ms
0.01 0.9959 12.46 0.9963 20.24 0.9976 5.47 2.98
0.02 0.9936 7.98 0.9935 12.89 0.9949 2.87 2.04
0.03 0.9913 6.18 0.9907 10.53 0.9921 2.15 1.56
0.04 0.9884 4.71 0.9860 8.41 0.9879 1.50 1.00
0.05 0.9856 4.32 0.9827 7.40 0.9836 1.35 1.18
0.06 0.9828 3.60 0.9776 6.40 0.9789 1.04 0.90
0.07 0.9797 3.08 0.9708 5.72 0.9726 0.85 0.72
0.08 0.9753 2.68 0.9623 5.13 0.9649 0.71 0.59
0.09 0.9702 2.85 0.9574 5.08 0.9577 0.78 0.69
0.10 0.9675 2.51 0.9492 4.62 0.9501 0.69 0.60

6 SIMULATION RESULTS FOR MOST EFFICIENT METHOD (VAR. (1))
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We use 16 passes,

k1 =

{
min(2�log2(1/p)−0.5�, n/2) if p ≤ 0.25,
min(max(1, 2�log2(1/p)−0.5�−1), n/2) if p > 0.25,

k2,K = min(2

⌈
log2

(
4/pbit(2K ,p|h·x=h·y)

)
−0.5

⌉
, |CK |/2),

k3 = 212, k4 = . . . k16 = n/2, and get a FER of ε ≈ 10−4.
Table: Block size n, cross-over probability p, efficiency values βIR and ηIR, frame
error rate ε, bit error rate εb, number of messages, throughput (without latency).

n p βIR ηIR ε εb #msg
throughput

(Mbit/s)
210 0.03 0.9747 1.105 1.6 × 10−4 0.00146 116 2.564
210 0.1 0.9433 1.064 2.3 × 10−4 0.00376 213 1.120
210 0.3 0.9223 1.0466 6 × 10−5 0.00208 202 0.505
214 0.03 0.994 1.025 1.4 × 10−4 0.0029 1386 2.617
214 0.1 0.9768 1.0263 4 × 10−5 0.00466 2805 0.877
214 0.3 0.8116 1.0254 5 × 10−5 0.0026 2878 0.320
216 0.03 0.9955 1.0185 1 × 10−4 0.0002 5180 2.102
216 0.1 0.9798 1.023 0 0 10773 0.671
216 0.3 0.822 1.024 0 0 11412 0.238
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