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Abstract—The security of quantum key distribution protocols
is guaranteed by the laws of quantum mechanics. However, a
precise analysis of the security properties requires tools from both
classical cryptography and information theory. Here, we employ
recent results in non-asymptotic classical information theory
to show that information reconciliation imposes fundamental
limitations on the amount of secret key that can be extracted
in the finite key regime. In particular, we find that an often
used approximation for the information leakage during one-way
information reconciliation is flawed and we propose an improved
estimate.

I. INTRODUCTION

Quantum key distribution (QKD) [3], [8] is a prime example
of the interdisciplinary nature of quantum cryptography and
the first application of quantum science that matured into
the realm of engineering and commercial development. While
the security of the generated key is intuitively guaranteed by
the laws of quantum mechanics, a precise analysis of the
security requires tools from both classical cryptography and
information theory (see [17], [25] for early security proofs
and [23] for a comprehensive review). This is particularly
relevant when investigating the security of QKD in a practical
setting where the resources available to the honest parties are
finite and the security analysis consequently relies on non-
asymptotic information theory.

In the following, we consider QKD protocols between two
honest parties, Alice and Bob, which can be partitioned into
the following rough steps. In the quantum phase, N physical
systems are prepared, exchanged and measured by Alice
and Bob. In the parameter estimation (PE) phase, relevant
parameters describing the channel between Alice and Bob are
estimated from correlations measured in the quantum phase.
If the estimated parameters do not allow extraction of a secure
key, the protocol aborts at this point. Otherwise, the remaining
measurement data is condensed into two highly correlated bit
strings of length n in the sifting phase — the raw keys X™ for
Alice and Y™ for Bob. We call n the block length and it is
the quantity that is usually limited by practical considerations
(time interval between generated keys, amount of key that has
to be discarded in case Alice and Bob create different keys,
hardware restrictions). In the information reconciliation (IR)
phase, Alice and Bob exchange classical information about
X™ over a public channel in order for Bob to compute an
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estimate X" of X™. The confirmation (CO) phase ensures that
X" = X" holds with high probability or aborts the protocol.
Finally, in the privacy amplification (PA) phase, Alice and
Bob distill a shared secret key of ¢ bits from X" and X" We
say that a protocol is secure if (up to some error tolerance)
both Alice and Bob hold an identical, uniform key that is
independent of the information gathered by an eavesdropper
during the protocol, for any eavesdropper with access to the
quantum and the authenticated classical channel.

The ratio ¢/N is constrained by the following effects: 1)
Some measurement results are published for PE and subse-
quently discarded. 2) The sifting phase removes data that is
not expected to be highly correlated, thus further reducing
the length n of the raw key. 3) Additional information about
the raw keys is leaked to the eavesdropper during the IR and
CO phase. 4) To remove correlations with the eavesdropper,
X" and X" need to be purged in the PA phase, resulting in a
shorter key. Some of these contributions vanish asymptotically
for large N while others approach fundamental limits.'

Modern tools allow to analyze QKD protocols that are
secure against the most general attacks. They provide lower
bounds on the number of secure key bits that can be extracted
for a fixed block length, n. For the BB84 protocol, such proofs
are for example given in [22], [24] and [9]. These proofs were
subsequently simplified to achieve better key rates in [31]
and [12], respectively. All results have in common that the
key rate that can be achieved with finite resources is strictly
smaller than the asymptotic limit for large n —as one would
intuitively expect.

We are concerned with a complementary question: Given
a secure but otherwise arbitrary QKD protocol for a fixed n,
are there fundamental upper bounds on the length of the key
that can be produced by this protocol? Such bounds are of
theoretical as well as practical interest since they provide a
benchmark against which contemporary implementations of
QKD can be measured. In the asymptotic regime of large block
lengths, such upper bounds have already been investigated,
for example in [19]. Here we limit the discussion to IR and
focus on bounds that solely arise due to finite block lengths

IConsider, for example, BB84 with asymmetric basis choice [15] on a
channel with quantum bit error rate Q. There, contributions 1) and 2) vanish
asymptotically while contributions 3) and 4) converge to h(Q).
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(Sec. II). We complement the bounds with a numerical study
of achievable leak values with LDPC codes (Sec. III), and
study some possible improvements and open issues (Sec. IV).

II. FUNDAMENTAL LIMITS FOR RECONCILIATION

We consider one-way IR protocols, where Alice first com-
putes a syndrome, M € M, from her raw key, X", and
sends it to Bob who uses the syndrome together with his
own raw key, Y, to construct an estimate X" of X™. We
are interested in the size of the syndrome (in bits), denoted
log | M|, and the probability of error, Pr[X™ # X™]. In most
contemporary security proofs log | M| enters the calculation of
the key rate rather directly.” More precisely, to achieve security
it is necessary (but not sufficient) that

{<n—leakgc, (D

where leakp- is the amount of information leaked to the
eavesdropper during IR. Since it is usually impossible to
determine leakpc precisely, this term is often bounded as
leakpc < log |M]|. In the following, we are thus interested
in finding lower bounds on log | M]|.

Let Pxy be a probability distribution. We say that an IR
protocol is e-correct on Pxy if it satisfies Pr[X" £ X "<e
when X™ and Y™ are distributed according to (Pxy)*™.
Any such protocol (under weak conditions on Pxy and for
small ¢) satisfies < log|M| > H(X|Y)p [28]. Moreover,
equality can be achieved for n — oo [26]. On first sight,
it thus appears reasonable to compare the performance of
a finite block length protocol by comparing log | M| with
its asymptotic limit. In fact, for the purpose of numerical
simulations, the amount of one-way communication from
Alice to Bob required to perform IR is usually approximated
as leakpe ~ £-nH(X|Y)p, where £ > 1 is the reconciliation
(error correction) efficiency. The constant £ is often chosen
in the range £ = 1.05 to & = 1.2.2 However, this choice is
scarcely motivated and independent of the block length, the
bit error rate and the required correctness considered.

Here, we argue that this approximation is unnecessarily
rough in light of recent progress in non-asymptotic information
theory. Strassen [27] already observed in the context of noisy
channel coding that the asymptotic expansion of the funda-
mental limit for large n admits a Gaussian approximation. This
approximation was recently refined by Polyanskiy et al. [21]
(see also [11]). The problem of information reconciliation —
also called source compression with side information — was
investigated by Hayashi [10] and recently by Tan and Ko-
sut [28]. Here we go slightly beyond this and provide bounds
on the asymptotic expansion up to third order:

Theorem 1. Let 0 < € <1 and Pxy arbitrary. Then, for large
n, any e-correct IR protocol on Pxy satisfies

log M| > nH(X|Y) +/nV(X|Y)® (1 —¢)
- %logn - 0(1),

2Recent works analyzing the finite block length behavior using this approx-
imation include [1], [4], [6], [12], [14], [24], [31].
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Fig. 1: The solid lines show the fundamental limit of the
efficiency, £(n,e; @), as a function of n for different values
of @ and €. The dotted lines show fits (see Table I) to Eq. (4)
for simulated LDPC codes (marked with symbols).

where H(X|Y') := Exp [log %] is the conditional entropy,
V(X|Y) := Var [log é—yy] is the conditional entropy vari-
ance, and ® is the cumulative standard normal distribution.

Moreover, there exists an e-correct IR protocol with log | M| <
nH(X|Y)+/nV(X]Y)® (1 —€) + Llogn + O(1).

The proof uses standard techniques, namely Yassaee et
al’s achievability bounds [36] and an analogue of the meta-
converse [21]. We omit it here due to space constraints and
refer to the full version [32]. Note that the gap between
achievable and converse bounds is logn, which leaves room
for improvements. In channel coding, the gap is at most
%log n, and constant for certain channels (see, e.g., [2], [29],
[33] for recent work on this topic).

We are in particular interested in the situation where Pxy
results from measurements on a channel with (independent)
quantum bit error rate (), as it for example occurs in BB84 [3]
or the 6-state protocol [5]. Here, we (at least) require e-
correctness for the distribution

1-@Q

PRy (0,0) = PRy (1,1) = ==,

P)?Y(()? 1) = P)?Y(lvo) =

| O
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The distribution (P)?Y)” describes a typical manifestation of
two random strings for which the expected bit error rate is
Q. For the following, we thus say, that a IR protocol is
(e, Q)-correct if it e-correct on PZ,,. We show the following,
specialized bounds:

Corollary 2. Let 0 < £ < 1 and let 0 < Q < %. Then, for

large m, any (g, Q)-correct IR protocol satisfies

log | M| > £(n,=:@) - nh(Q) — 5 logn — O(1),

where

2

. L L \Y v(Q) —1/1_
Here, h(z) = —zlogax — (1 —x)log(l —x) and v(z) = z(1—
z)log? (z/(1—z)). Furthermore, there exists a (<, Q)-correct
IR protocol with log |M| < &(n, &; Q)-nh(Q)+3 log n+O(1).

The proof of Eq. (2) follows by specializing Theorem 1 to
the distribution Py, .

Numerical simulations reveal that the approximation in
Corollary 2 is very accurate even for small values of n. More
precisely, we establish an analytical bound, Eq. (3) on the
next page, where F'~1(-;n,p) is the inverse of the cumulative
distribution function of the binomial distribution. This bound
can be evaluated numerically even for reasonably large n.

III. RESULTS

As shown above, log| M| =~ &(n,e;Q)nh(Q) is theo-
retically achievable and optimal up to additive constants.
This implies, for example, that the approximation log | M| =
1.1nh(Q) is provably too optimistic if {(n,e;Q) > 1.1, e.g.
for n < 10% @Q = 2.5% and ¢ = 1072. The function
&(-,&;Q) is plotted in Fig. 1 for different values of € and Q.
However, theoretical achievability only ensures the existence
of a code without actually constructing it; in particular, it is
not known if efficient codes used in practical implementations
can achieve the above bound. Hence, the approximation given
in Corollary 2 is generally too optimistic and must be checked
against what can be achieved using state-of-the-art codes.

We suggest that practical information reconciliation codes
for finite block lengths should be benchmarked against the
fundamental limit for that block length, and not against the
asymptotic limit. Moreover, we conjecture that, for some
constants &1, > 1 depending only on the coding scheme
used, the leaked information due to information reconciliation
can be approximated well by

leakpo = & - nh(Q) + & - V/nu(Q) <I>_1(1 —g) @

for a large range of n and () as long as ¢ is small enough.
Here, £, measures how well the code achieves the asymptotic
limit (1st order) whereas £, measures the 2nd order deficiency.

In the following we test this conjecture against some state-
of-the-art error correcting codes and find &; and &> for these
codes. Furthermore, we are concerned with the following sys-
tem design question: given a reconciliation failure probability €
and block length n, what is the leakage expected in practice?
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Fig. 2: Simulated block error rates € of LDPC codes of length
n = 10% and n = 10* and coding rates R = 0.6, R = 0.7 and
R = 0.8 as a function of quantum bit error rate ().

For this numerical analysis we focus on low-density parity-
check (LDPC) codes following several recent implementations
[16], [20], [35].

We constructed a set of LDPC codes with the progressive
edge algorithm (PEG) [13] using the following degree poly-
nomials:

A1 (z) = 0.1560z + 0.348222 + 0.15942'3 + 0.336424

Ao(z) = 0.13052 + 0.289222 + 0.11962'° + 0.18372'2
+0.27702

A3(z) = 0.1209z + 0.273822 + 0.11512° + 0.26112"°
+0.22912:1

where A1 (z), A2(x) and Az(x) were designed for coding rates
0.6, 0.7 and 0.8, respectively [7].

Fig. 2 shows the block error rate of the codes with rates
0.6, 0.7, 0.8, and lengths 103, 10* as a function of Q. The
thick lines connect the simulated points while the dotted lines
represent a fit following Eq. (4) (the fit values can be found
in Table I). The fit perfectly reproduces the so-called waterfall
region of the codes. However, Eq. (4) drops sharply with @
for @ € [0,0.1] while LDPC codes experience an error floor.
In this second region the fit can not approximate the behavior
of the codes.

In Fig. 1 we plot the function £(n,e; Q) and the efficiency
results obtained with LDPC codes. We chose as representative
lengths 103, 10%, 10°, and 10%. For every block length we
constructed codes of rates 0.6, 0.7 and 0.8 following A1 (x),
A2(z) and As(z). The points in the figure were obtained
by puncturing and shortening the original codes [16] until
the desired block error rate was obtained. The results show
an extra inefficiency due to the use of real codes. This
inefficiency shares strong similarities with the converse bound,
its separation from the asymptotic value is greater for lower
values of @, block error rates and lengths and fades as these
parameters increase. For example, for n = 104, Q = 1.0%
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log | M| > nh(Q) + (n(l -Q) - F‘1<5(1 +1/v/n);n,1— Q) — 1) log

1 1
Q—flogn—logg 3)

and € = 1072 the extra inefficiency due to the use of real
codes is over 1.2 while for n = 10%, Q = 5.0% and ¢ = 10~*
the extra inefficiency is close to 1.05.

Finally, we address the design question posed above, that
is, we study the efficiency variation as a function of the block
error rate for fixed n and (). For this setting we need code
constructions that allow to modulate the rate with fixed block-
length. The most natural modulating option would have been
to construct codes for every n of interest and augment [18]
the codes, that is, eliminate some of the restrictions that the
codewords verify. However, it is known that LDPC codes do
not perform well under this rate adaptation technique [34]. In
consequence, we constructed a different code with the PEG
algorithm for every rate. In order to obtain a smooth efficiency
curve we used the degree polynomials A1 (x), A2(z) and As(z)
for constructing all codes even with coding rates different to
the design rate.

Fig. 3 shows the efficiency as a function of the block error
rate. Each of the two subfigures (a) and (b) show the simulation
results for codes of length 102 and 10%, respectively. Colours
blue and red correspond to @@ = 1.5% and 3.0% in subfigure
(a) and to 2.5% and 4.0% in subfigure (b). The solid lines show
the bound given by Corollary 2, similar to Fig. 1 we observe
that, ceteris paribus, lower values of () imply higher values
of £. The points show values achieved by LDPC codes: each
point represents the block error rate of a different parity check
modulated code. Finally the dotted lines show the best least
squares fit to Eq. 4, the values of &; and &5 can be found in
Table 1. From these curves we can extract some useful design
information, 1) if the target failure probability is very high
[16] then the gain obtained by increasing the block length is
modest, 2) if the target failure probability is low (below 10~%)
the leakage is over a fifty percent larger than the optimal one
for moderate block lengths and 3) for block-length 10°, the
largest length for which we could compute simulations in the
whole block error rate region, we were unable to consistently
offer efficiency values below 1.1 and furthermore we report
no point with f below 1.05.

Table I shows the values of ¢; and & used in Figs. 1, 2,
and 3 to fit the data points obtained from the simulations.
In these curves & is—independently of &, n, Q—in the
range [1.05,1.16] while the 2nd order deficiency & is more
sensible to the parameter variations. For the first four rows,
that correspond to Fig. 1 with fixed () and ¢, &5 is in the range
[2.41, 3.82], for the middle six rows, that correspond to Fig. 2
with fixed n and leak, &5 is in the range [1.49, 1.96], while for
the last four rows, that correspond to Fig. 3 with fixed n and
Q, & is in the range [1.26, 1.58]. Note that for each scenario,
the averages in these ranges could safely be used for system
design purposes since necessarily codes with those £; and &
values or better exist.
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Fig. 3: Ratio between the leakage and the asymptotical op-
timum in several scenarios as a function of the block error
rate €. Subfigures (a) and (b) show results for block lengths
10% and 10%, respectively. In each subfigure the solid lines
show the converse bound from Corollary 2 while the dotted
lines show the values achieved with actual LDPC codes.

IV. CONCLUSION

In this paper we studied the fundamental limits for informa-
tion reconciliation in the finite key regime. These limits imply
that the commonly used approximation log |M| ~ 1.1nh(Q)
is too optimistic for a range of error rates and block-lengths,
and proposed a two-parameter approximation that takes into
account finite key effects.

We compared the finite length limits with LDPC codes and
found a consistent range of achievable finite-length efficien-
cies. These efficiencies should be of use to the quantum key
distribution systems designer. One question that we leave open
is the study of these values for different coding families.

Finally, it is clear that PE and PA also contribute to finite-
length losses in the QKD key rate. While it seems possible
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TABLE I: Values of &; and & for the fitted curves in Fig. 1-3.

n Q € leak &1 &2
- 0.010 102 - 1.13  3.82
- 0.025 102 - 1.07 3.71
- 0.050 102 - 1.06 3.54
- 0.050 101 - 1.05 2.41
103 - - 4.10% | 1.11  1.39
103 - - 3-102 | 1.12  1.45
103 - - 2-102 | 1.13  1.69
104 - - 4.10% | 1.07 1.41
104 - - 3-103% | 1.08 1.44
104 - - 2.10% | 1.11  1.89
102 0.015 - - 1.16  1.52
102 0.030 - - 1.16 1.31
10 0.025 - - 1.14 1.26
10*  0.040 - - 1.07  1.58

to investigate fundamental limits in PA based on the normal
approximation of randomness extraction against quantum side
information [30] as a separate problem, we would in fact need
to investigate it jointly with IR since there is generally a trade-
off between the two tasks that needs to be optimized over.
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