
An Information Reconciliation Protocol for
Secret-Key Agreement with Small Leakage

Christoph Pacher∗‡, Philipp Grabenweger∗, Jesus Martinez-Mateo† and Vicente Martin†
∗Digital Safety & Security Department, AIT Austrian Institute of Technology GmbH,

Donau-City-Straße 1, 1220 Vienna, Austria.
†Facultad de Informática, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.

‡Correspondence to: christoph.pacher@ait.ac.at

Abstract—We report on a highly efficient information rec-
onciliation protocol for the binary symmetric channel (BSC)
with feedback, proposed to be used in the context of secret-key
agreement. This is a variant of the so-called Cascade protocol.
Simulations determine efficiencies, defined by the ratio of actual
transmitted information to the necessary amount of information,
of approximately 1.025 for a frame length of 214 bits and a frame
error rate of typically 10−4. The proposed algorithm works for
any BSC parameter between 0 and 0.5.

Index Terms—Information reconciliation, secret-key agree-
ment, two-way reconciliation, cascade protocol, leakage.

I. INTRODUCTION

We provide an algorithm and an analysis of it for the
following information reconciliation (IR) problem:

Let X and Y be binary random variables (RV) belonging
to two parties, named Alice and Bob, respectively. We assume
that Pr[X = 0] = Pr[X = 1] = 1

2 and that Y results from
the transmission of X over a binary symmetric channel with
crossover probability p, denoted by BSC(p). The parties have
observed the vectors x,y ∈ {0, 1}n which are the outcomes of
n independent and identically distributed (i.i.d.) instances of
X and Y , respectively. Alice and Bob are allowed to exchange
an arbitrary number of messages over a noiseless channel and
perform local computations to reconcile Bob’s vector. Finally,
Bob shall have obtained an estimate x̂ of Alice’s vector x such
that the error probability ε := Pr{x 6= x̂} is negligible [1].

This problem typically occurs in secret-key agreement over
noisy channels, and particularly in quantum key distribution
[1]. Therefore, in addition to having a low error probability ε,
the amount of information disclosed about x that leaks on the
noiseless channel, and the computational effort should be as
small as possible.

A. Information Leakage

For any information reconciliation protocol in the context of
secret-key agreement, a key figure is the amount of informa-
tion that leaks to a potential eavesdropper during the execution
of the protocol. Obviously, this number should be as small as
possible, but often its exact determination is not possible and
the number of transmitted bits is used as an upper bound. In
some cases this estimate can, however, be improved. For exam-
ple, in case that m linearly dependent parities are transmitted,
the number m∗ of linearly independent parities is clearly a
sharper bound, since m∗ < m and linear combinations of

bits do not contain additional information. Unfortunately, we
are not aware of how to calculate this number during or
after reconciliation without compromising the throughput of
an IR protocol1. Therefore, we resort to using the number
of transmitted bits in one direction2 as an upper bound for
the number of leaked bits and thus minimize the number of
transmitted bits. As shown in Section VII-A, for most cases
this upper bound is quite close to the actual number of linear
independent bits.

B. General Notes

Note that our problem to reconcile y to x is identical to
finding the error word x ⊕ y, where the binary operator ⊕
denotes XOR (sum modulo 2). Thus to simplify the description
of our analysis we assume that Alice has transmitted the all-
zero vector x = 0 and analyze how she can locate all 1’s in
Bob’s vector through only the exchange of parities.

II. THEORETICAL BOUNDS

Recently, the IR problem in the finite block length case
without feedback has been studied [4]–[6] and the following
lower bound for the necessary amount of information m sent
over the noise-free channel has been obtained [6]

m

n
≥ H(X|Y) +

√
V (X|Y)

n
Φ−1(1− ε)− log2 n

2n
−O

(
1

n

)
.

(1)

where Φ(x) is the cumulative standard normal distribution,3 H
is the conditional entropy, and V is the channel dispersion. For
discrete memoryless channels (DMC) under variable-length
coding it is known that feedback does not increase the capacity
C [7] nor the ε-capacity4 [8], but that feedback in the finite
block length case completely eliminates the term involving

1Gaussian elimination is one method to calculate the rank; asymptotically it
requires the same number of algebraic operations as matrix multiplication [2].

2Note that, for an eavesdropper that has observed all messages on the
noiseless channel from Alice to Bob, the messages that are transmitted from
Bob to Alice provide no further information on Alice’s vector x. See also
endnote [28] in [3].

3Often Q(x) := 1−Φ(x) and the relation Φ−1(1−ε) = Q−1(ε) is used.
4The ε-capacity is defined as the capacity when an error probability ε is

tolerated.

730978-1-4673-7704-1/15/$31.00 ©2015 IEEE ISIT 2015

the channel dispersion [8]: for every DMC codes exist that
use feedback and achieve block error rates ε with rates

R =
C

1− ε
−O

(
log n

n

)
. (2)

We are not aware of any theoretical result concerning
bounds on m for finite-length IR with variable-length feed-
back, however it seems reasonable that a relation similar to
Eq. (2), i.e. without the dispersion V will hold. The algorithm
proposed here will indeed strengthen this conjecture.

III. EFFICIENCY MEASURES

In the following we introduce several measures of efficiency
for an information reconciliation protocol over the BSC(p). As
first measure, the efficiency can be defined as the percentage
of additional information disclosed over the Shannon limit,
i.e. the ratio of the number of transmitted bits m and the
(asymptotic) minimum of the leakage, nH(X|Y) = nh(p),

ηIR =
m

nh(p)
, (3)

where h(p) denotes the binary Shannon entropy function given
by h(p) := −p log2 p− (1− p) log2(1− p).

The reconciliation efficiency can be also defined as the ratio
of the maximal length of the secret key (taking into account
the leakage m) and the capacity of the BSC(p)

βIR =
1−m/n
1− h(p)

. (4)

Note that, in general ηIR ≥ 1 and βIR ≤ 1, and the equality
holds in both cases for perfect reconciliation. Both measures
ηIR and βIR are related by

1− ηIRh(p) = βIR (1− h(p)) . (5)

Further note that these measures are acceptable given that
we are typically interested in very low error probabilities ε.
However, as motivated by Eqs. (1) and (2), the error proba-
bility must be generally taken into account. In this regard, we
additionally report here: (i) the block error probability ε, i.e.
the ratio of frame pairs (x, x̂) with x 6= x̂ after reconciliation,
and (ii) the bit error probability εb, i.e. the average ratio of
different bits in both frames.

IV. THE CASCADE PROTOCOL

We provide first a description of the original Cascade
algorithm and some modified versions.

A. The Original Protocol

In what follows we restate the Cascade protocol [1] in
the language of linear block codes.
Cascade works in successive passes. At the beginning of

pass i, Alice and Bob agree on the parity-check (PC) matrix
Hi of a linear code with constant row weight ki, such that each
bit is covered by exactly one PC equation. Then Alice and Bob
exchange the corresponding syndromes, Hix and Hiy, and for

each different syndrome bit they perform a dichotomic search5

(by exchanging further parities) to localize a bit error. After all
errors positions are located Bob flips the corresponding bits in
y such that the syndromes of Alice and Bob are now identical.
They either stop the protocol or start a new pass with a new
(random) PC matrix that covers different and larger sets of
bits in each PC row.

In the original description of Cascade the row weights ki
of the PC matrices Hi were chosen as follows. Based on an
estimate p̂ of the channel parameter p the row weight in the
first pass is k1 = [0.73/p̂], where [] denotes the nearest integer.
In following passes the row weight is doubled, ki = 2ki−1.

From the second pass onward, each detected error can
be used to correct further errors in other already completed
passes. Let us suppose that an error is detected during the
second pass. Since in the first pass all PCs are satisfied, it
means that this bit error was in the first pass covered by an odd
number of additional bit errors and thus it remains undetected
by the PC equation. Consequently, there must be at least a
second error in the bits covered by that PC equation and it
can be now corrected by additional dichotomic searches. Since
every bit participates in exactly one PC row in every pass,
if an error is detected in pass i this uncovers errors in all
passes 1, . . . , i− 1. Note that dichotomic searches are shorter
for earlier passes, thus the cascade process should start always
from the first pass continuing until pass i−1. Further note that
since (and as long as) the dichotomic searches corresponding
to different PC rows are independent, in each pass, these can
be processed and communicated in parallel.

Finally, the protocol concludes when four passes have
been completed. These four passes are empirically enough to
remove “all” discrepancies in a frame of 104 bits lengths [3].

B. Earlier Improvements of the Cascade Protocol

Recently we have reported a detailed analysis and review
of the Cascade protocol and its modifications [3]. Previous
to [3] the main ideas for improving the protocol have been:
(i) to optimize the row weights ki and the number of passes,
(ii) to replace the random construction of PC equations, (iii)
to not include corrected bits in PC equations (that leads to
a more accurate splitting into two PC equations covering the
same number of potentially wrong bits) during the dichotomic
searches, and (iv) to reuse PC equations where Alice and Bob
have the same syndrome bit. In [3] a thorough numerical
analysis based on simulations for the mentioned modifica-
tions has been provided. Focus was also put on accurately
simulating the resulting block error probability ε of each
variant. In addition, based on simulations it was observed in
[3] that previous modifications of the row weights missed the

5They (i) split the corresponding PC equation in two non-overlapping PC
equations (they split the check node of the corresponding Tanner graph), (ii)
calculate the parity of x and y corresponding to the first new PC equation, and
(iii) exchange both parities. If the parities differ they continue their splitting
and parity exchange in the first PC equation. Otherwise, there is an odd
number of errors in set of bits covered by the second PC equation and they
continue their splitting and parity exchange there. The parties continue until
they have located the exact position of a bit error in at most dlog2 kie steps.

731

most important point: the optimal efficiency is achieved using
powers-of-two row weights, i.e. ki = 2Ki . In combination
with an optimization of Ki for p from 1% to 11% efficiencies
ηIR ≈ 1.04 . . . 1.06 (corresponding to βIR ≈ 0.997 . . . 0.94)
could be achieved for a frame length of n = 216.

V. ON THE OPTIMAL EFFICIENCY OF CASCADE

As commented above, recently we realized that the effi-
ciency of Cascade significantly improves using parity-check
weights that are powers of two [3]. A deeper understanding of
this fact was, however, not known. Below we develop some
ideas that help us understand this improvement.

Rule 1. To reconcile with a number of transmitted bits close to
the theoretical minimum of nh(p), we shall transmit (mostly)
bits that contain (almost) one bit of information.

Equivalently, the conditional probability of (most) trans-
mitted bits to be a one given the values of all previously
transmitted bits must be (close to) 1

2 .

Let the message T be the RV formed by the concatenation of
all transmitted bits T1, . . . , Tm. The length m of T is minimal
if T is incompressible, i.e. m− 1 < H(T) ≤ m.

Note that for the BSC(p), H(T) ≥ nh(p). Let us first
assume that H(T) = m. Then, since H(M) = H(X1) +∑m

k=2H(Xk|X1 . . . Xk−1), all (conditional) entropies on the
right hand side (there are m of them) must be equal to one, and
all conditional probabilities Pr[Xk = 1|X1 . . . Xk−1] = 1

2 .
On the other hand if we transmit bits with conditional

probabilities q 6= 1
2 , we transmit with each bit only h(q) bits of

information and we will need to transmit dnh(p)/h(q)e bits.

A. Proof of Optimality of Dichotomic Searches on 2K-Checks
With Odd Parity

Let the term t-check denote a parity-check row of weight
t. The parity of a binary vector x with respect to (w.r.t.) a
parity-check row h is the inner product h · x (taken mod 2).

Let us assume we have a vector x that consists of i.i.d. bits
xi with Pr[xi = 1] = p, 0 < p < 1

2 . Further assume we have
a 2n-check h, which splits into two disjoint n-checks h′ and
h′′, i.e. h = h′ ⊕ h′′. Then, for all values of n if x has odd
parity w.r.t. h (h · x = 1) we get (using the symmetry in h′

and h′′) that

Pr[h′ · x = 1 ∧ h′′ · x = 0|h · x = 1] =
1

2
,

Pr[h′ · x = 0 ∧ h′′ · x = 1|h · x = 1] =
1

2
. (6)

Consequently, the parity h′ · x (or equivalently the parity
h′′ · x) carries exactly h

(
1
2

)
= 1 bit of information about x,

which is the optimal case.
If x has even parity w.r.t. h (h · x = 0) we have

Pr[h′ · x = 0 ∧ h′′ · x = 0|h · x = 0] =
p2even(n, p)

peven(2n, p)
>

1

2
,

Pr[h′ · x = 1 ∧ h′′ · x = 1|h · x = 0] =
p2odd(n, p)

peven(2n, p)
<

1

2
.

(7)

Since both cases have probabilities different from one half
the information contained in h′ ·x (or h′′ ·x) is always smaller
than one bit. Here

peven(n, p) := Pr[h · x = 0] =
1 + (1− 2p)n

2
, and (8)

podd(n, p) := Pr[h · x = 1] =
1− (1− 2p)n

2
(9)

denote the probabilities that x has even or odd parity w.r.t. an
n-check h, respectively.

Similarly, we can proof that any splitting of (2n+1)-checks
with odd or even parity leads for p 6= 1

2 always to conditional
probabilities different from one half and thus results in parities
with less than one bit of information.

So far we have seen that splitting 2n-checks with odd
parities w.r.t. x into two n-checks is the only case where we
gain exactly one bit of information (cf. Eq. (6)). If we want
to continue this optimal splitting until we end up with two 1-
checks, by induction we need to start with a 2K-check (where
K is a positive integer) with odd parity w.r.t. x.

VI. IMPROVED PROTOCOL

As we already reported in [3], starting with a frame of 214

bits and using only 2K-checks could significantly improve the
efficiency ηIR of Cascade (typically from 1.15 to 1.05).
However, since the efficiency is still larger than unity, there
must be further ways to improve this. In the following we give
first an overview of where Cascade still “leaks” too much
information, and second we describe how to fix it.

A. Optimize Initial Check Weights

Previously, all reported implementations of Cascade have
used for the first pass k1-checks where k1 < 2/p, and most
of them used k1 ≤ 1/p. However, note that peven(n, p) and
podd(n, p), cf. Eqs. (8) and (9), are both approaching 1

2 with
increasing n. Thus, in general, larger PC weights in the
first round should be better (cf. Rule 1). However, this rule
interferes with the rule of the next section: making PC weights
too large reduces the advantage of the next step. In contrast our
numerical simulation resulted in the following optimal check
weights for the first pass:

k1 =

{
min(2[log2(1/p)], n/2) if p ≤ 0.25,

min(max(1, 2[log2(1/p)]−1), n/2) if p > 0.25.
(10)

Note, the min function limits the check weight to half the
vector length, the max function avoids check weights smaller
than one. Note also, that for p > 0.355 the optimal check
weight is one, i.e. the complete vector is transmitted on the
noiseless channel.

B. Group Bits According to Conditional Probability

We will have a closer look at the iterative bisection of 2K-
checks with odd parity w.r.t x. Note that after the first bisection
step we obtain a 2K−1-check with even parity and a 2K−1-
check with odd parity. The 2K−1-check with odd parity will
itself be further divided into a 2K−2-check with even parity

732

and a 2K−2-check with odd parity. This process continues by
dividing the check with odd parity until we finally divide a
2-check with odd parity.

Consequently, after the last step we have obtained from the
original 2K-check with odd parity a set of 2K

′
-checks (for all

K ′ ∈ {1, . . . ,K − 1} we obtain exactly one PC) that all have
even parity and two definitely known single bits which have
the values 0 and 1 (or 1 and 0), respectively. In addition we
have the set of 2K-checks that had even parity in the first pass
and had not been divided.

Now, after the first pass the standard Cascade algorithm
continues by creating PC rows with larger weight covering
randomly selected bits, calculating parities, dividing PC with
odd parities, and performing dichotomic searches to localize
further errors. However, already the first step (selecting bit
positions randomly) is definitely non-optimal as we will show
in the following.

Note, that the conditional probability that a bit in a t-check
(with i.i.d. bits) with even parity is an error bit does strongly
depend on the PC weight t

pbit(t, p|h · x = 0) = p
podd(t− 1, p)

peven(t, p)
. (11)

Therefore, when selecting bits randomly for each new pass
we “forget” that we have already learned in previous passes,
i.e. that bits in PC of larger weight with even parity are (much)
more likely wrong than bits in PC with smaller weight with
even parity. In other words we destroy information.

To be able to transmit bits that have (almost) one bit
of information (cf. Eq. (6)), we transform the non-uniform
distribution to a set of distributions that are each uniform but
with different bit error probabilities. After the first pass we
construct bit groups BK′ : one group for each K ′ ∈ {1, . . . ,K}
that consists of all bits checked by all 2K

′
-checks (recall

that after the first pass all PC have even parity), and another
bit group that contains all single bits with values which are
already definitely known. We have now obtained K different
bit groups that can contain errors, each one consisting of
bits with the same a-posteriori error probability that we can
calculate according to Eq. (11).

In the second pass we adapt the PC weight k2,K′ for each
bit group BK′ as

k2,K′ = min(2[log2(4/pbit(2
K′

,p|h·x=0))], |BK′ |/2), (12)

and create random PC patterns for each bit group separately.

C. Perform Bisection on the Smallest of All Possible Checks

Let us assume that in i-th pass the dichotomic search has
located a bit error. This error can be tracked back to exactly
one PC equation per previous pass, i.e. by flipping the error bit
it produces i−1 PC with odd parity. Potentially, we have found
i−1 additional bit errors. However, note that it is possible that
two or more PC equations contain the same bit error given that
these PC are all from different passes.

In any case we have to decide how we should continue
with the processing. If we want to minimize the number of

transmitted bits it is necessary to bisect the smallest of all
PC with odd parity, which could belong to any of the passes,
from 1 to i− 1, let us say pass i′. Bisecting this PC results in
another localized bit error. Again this error is corrected in all
other i− 1 passes. We potentially obtain i− 1 new bit errors
and their corresponding PC with odd parity. However, as the
process continues, it may also happen that PC with odd parity
are affected and toggled back to even parity.

Let us for a moment concentrate on the simplest case, pass
2. If we localize an error in a PC of pass 2 we can correct
the error in some 2K

′
-check of pass 1. This PC now has odd

parity. Note that, one bit out of 2K
′

bits is already exactly
known before the dichotomic search. Nevertheless, we start
a standard dichotomic search, however, we take care not to
transmit redundant information. (see Section VI-D).

D. Reducing Redundant Information

Another improvement above the standard (state-of-the-art)
Cascade consists in keeping a list of all frame bits which
are already known to be correct. Whenever we correct an
erroneous bit (which has been located by a previous bisection),
we know that the bit is now definitely correct (it cannot
happen in the Cascade algorithm that an already correct bit
is toggled), thus we can add it to the list of known correct bits.
Additionally, whenever we do a bisection of an odd PC, we
learn the parity sums of the two halves of the PC. If the half
with parity 0 consists only of a single bit, we can also add this
bit to the list of correct bits. We can use this list of correct
bits in the following manner: Whenever we do a bisection of
an odd PC, we would in principle have to calculate the parity
sum of one half of the PC (the parity sum of the other half is
then also known, since the whole PC has odd parity). Before
we do this, we can check if one of the halves consists only
of bits which are already in the list of known correct bits.
If this is the case, we know the parities of both halves and
do not need to transmit any parity bit and can immediately
proceed with bisecting the half with odd parity. The same can
be done at the beginning of the i-th pass, when we start with
calculating the parity sums over PC of size ki. For each PC
we can check if it consists only of already known correct bits,
and if it does we do not need to transmit it.

If we use bit groups (cf. Section VI-B) in the second pass,
we know that the parity sum of each bit group is even. Thus
after new PCs are formed the parity of the last PC in each
group is redundant and need not be transmitted.

VII. SIMULATION RESULTS

Simulations were performed to cover the range of the
channel parameter p from 0.01 up to 0.5. This is in contrast
to previous studies that typically concentrate only on p ∈
[0, 0.11], the interval mainly of interest for discrete variable
QKD protocols, such as the well-known BB84 protocol [9].
Random bit frames were generated simulating independent
Bernoulli processes with success probability p. Simulations
have been comprehensively computed to accurately estimate
the reconciliation efficiency, ηIR and βIR, frame error rate,

733

ε, and bit error rate, εb. To calculate those quantities we have
simulated 105 frames for n = 210 and n = 214 and 104 frames
for n = 216.

Fig. 1 shows the average reconciliation efficiency of the
original Cascade [1] (black), the optimized version proposed
in [3] (green) and the modified protocol proposed here (blue).
Two frame lengths of n = 214 bits (solid lines) and n = 216

bits (dashed lines) were considered. As shown in Fig. 1, the
efficiency of the modified protocol proposed here improves
the values reported in [3] for the region of interest in QKD
(zoomed area), but even more interesting is that it does not
degenerate for greater values of p.

0 0.1 0.2 0.3 0.4

Crossover probability p

1

1.1

1.2

1.3

1.4

1.5

1.6

R
ec

o
n
ci

li
at

io
n
 e

ff
ic

ie
n
cy

 η
IR

0 0.1 0.2 0.3 0.4

Crossover probability p

1

1.1

1.2

1.3

1.4

1.5

1.6

R
ec

o
n
ci

li
at

io
n
 e

ff
ic

ie
n
cy

 η
IR

Cascade orig.

Martinez et al.

Proposed here

n=2
14

n=2
16

0.02 0.04 0.06 0.08

1.02

1.04

1.06

Fig. 1. Average reconciliation efficiency for the BSC(p).

Table I summarizes the efficiency, as defined in Eqs. (3)
and (4), of the proposed reconciliation protocol together
with the average block error probability for some remarkable
crossover probabilities and several frame lengths.

TABLE I
EFFICIENCY VALUES, FRAME AND BIT ERROR RATES.

n p ηIR βIR ε εb
210 0.03 1.105 0.9747 1.6× 10−4 0.00146
210 0.1 1.064 0.9433 2.3× 10−4 0.00376
210 0.3 1.0466 0.9223 6× 10−5 0.00208
214 0.03 1.025 0.994 1.4× 10−4 0.0029
214 0.1 1.0263 0.9768 4× 10−5 0.00466
214 0.3 1.0254 0.8116 5× 10−5 0.0026
216 0.03 1.0185 0.9955 1× 10−4 0.0002
216 0.1 1.023 0.9798 0 0
216 0.3 1.024 0.822 0 0

A. Actual Leakage vs Number of Transmitted Bits

Given that we perform several random selections it may
occur that a transmitted parity is linearly dependent on already

transmitted parities. In such case, the actual information that
the eavesdropper gets from this linear dependent bit is zero.
Consequently, the leakage is bounded from above by the
number of linear independent parities which is the rank over
GF(2) of the binary matrix formed by all parity-check equa-
tions including also the dichotomic searches. Our simulations
indicate that for values of the channel parameter satisfying
p < 0.1 the quotient of the number of transmitted bits and the
number of linearly independent bits is at the order of 1.001,
and for larger values of p this quotient is smaller than 1.01,
even for short frame lengths.

VIII. CONCLUSIONS

We have proposed and simulated an improved information
reconciliation protocol with feedback that is well suited for the
secret-key agreement problem. A previous observation on the
optimality of using powers of two for the weights of the parity-
checks in the Cascade protocol was motivated here for the
first time. In additi n, our analysis paved the way for a set of
additional improvements that helped to increase the efficiency
of Cascade. For a frame length of 214 the proposed protocol
notably achieves an efficiency below ηIR < 1.03 in the
range p ∈ [0.02, 0.5]. This closed approximately half of the
previously remaining gap to an efficiency of unity at the
beginning of the range, but also remarkably, the efficiency
remains constant for higher values of p.

ACKNOWLEDGMENT

This work has been partially supported by the project
Hybrid Quantum Networks, TEC2012-35673, funded by Min-
isterio de Economı́a y Competitividad, Spain.

REFERENCES

[1] G. Brassard and L. Salvail, “Secret-key reconciliation by public discus-
sion,” in EUROCRYPT ’93, ser. Lecture Notes in Computer Science, vol.
765, 1994, pp. 410–423.

[2] J. R. Bunch and J. E. Hopcroft, “Triangular factorization and inversion
by fast matrix multiplication,” Math. Comp., vol. 28, pp. 231–236, 1974.

[3] J. Martinez-Mateo, C. Pacher, M. Peev, A. Ciurana, and V. Martin, “De-
mystifying the information reconciliation protocol Cascade,” Quantum
Inform. Comput., vol. 15, no. 5&6, pp. 453–477, May 2015.

[4] M. Hayashi, “Second-order asymptotics in fixed-length source coding and
intrinsic randomness,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4619–
4637, Oct. 2008.

[5] V. Tan and O. Kosut, “The dispersion of Slepian-Wolf coding,” in IEEE
Int. Symp. Inf. Theory, July 2012, pp. 915–919.

[6] M. Tomamichel, J. Martinez-Mateo, C. Pacher, and D. Elkouss, “Fun-
damental finite key limits for information reconciliation in quantum key
distribution,” in IEEE Int. Symp. Inf. Theory, June-July 2014, pp. 1469–
1473.

[7] C. E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans.
Inf. Theory, vol. 2, no. 3, pp. 8–19, 1956.

[8] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Feedback in the non-asymptotic
regime,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4903–4925, Aug.
2011.

[9] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” in IEEE Int. Conf. Computers, Systems,
& Signal Processing, Dec. 1984, pp. 175–179.

734

