
IEEE COMMUNICATIONS LETTERS, VOL. 14, NO. 12, DECEMBER 2010 1155

Improved Construction of
Irregular Progressive Edge-Growth Tanner Graphs

Jesus Martinez-Mateo, David Elkouss, and Vicente Martin

Abstract—The progressive edge-growth algorithm is a well-
known procedure to construct regular and irregular low-density
parity-check codes. In this paper, we propose a modification of
the original algorithm that improves the performance of these
codes in the waterfall region when constructing codes complying
with both, check and symbol node degree distributions. The
proposed algorithm is thus interesting if a family of irregular
codes with a complex check node degree distribution is used.

Index Terms—Irregular low-density parity-check codes, pro-
gressive edge-growth algorithm, waterfall region.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes were intro-
duced by Gallager in the early 1960s [1]. These codes

are capacity achieving for many communication channels, and
though forgotten for years, are nowadays ubiquitous as they
have been found useful in many communications problems.

A family of LDPC codes is usually defined by two gen-
erating polynomials, 𝜆(𝑥) and 𝜌(𝑥). The coefficients of these
polynomials define the distribution of incident edges to symbol
and check nodes respectively. Richardson et al. showed that
the asymptotic behaviour of a family of codes defined by both
polynomials can be analysed by using the density evolution
algorithm [2]. Families of LDPC codes performing close to
the channel capacity can be then designed by optimising both
generating polynomials [3], [4].

An LDPC code is a linear code identified by an sparse
parity-check matrix or its equivalent bipartite graph, also
called Tanner graph. It is known that some iterative algorithms,
such as belief propagation based algorithms, provide optimum
decoding over cycle-free Tanner graphs [5]. However, any
finite-length graph has necessarily cycles, and it has been
shown that a large girth (length of the shortest cycle) improves
the performance of LDPC codes using iterative decoding as
it enforces a reasonable minimum distance [6]. Therefore,
taking into account that a finite-length graph has cycles, it
is important to make its girth as large as possible.

The progressive-edge-growth (PEG) algorithm is an ef-
ficient method for constructing Tanner graphs with large
girth [6], in most cases with better performance than ran-
domly constructed codes. PEG algorithm’s interest lies in its
simplicity, and its flexibility when constructing codes from a
complex symbol node degree distribution. However, note that
a large girth does not automatically imply a a large minimum
distance. The performance of these codes can be improved,

Manuscript received August 1, 2010. The associate editor coordinating the
review of this letter and approving it for publication was M. Ardakani.

The authors are with the Facultad de Informática, Universidad Politécnica
de Madrid, Madrid, Spain (e-mail: {jmartinez, delkouss, vicente}@fi.upm.es).

Digital Object Identifier 10.1109/LCOMM.2010.101810.101384

for instance, in the error floor region. Significant research in
PEG-based algorithms has been done to achieve this improved
performance.

The rest of this paper has been organised as follows. In
Section II, a modified PEG algorithm is proposed for the
construction of LDPC codes following both 𝜆(𝑥) and 𝜌(𝑥)
degree distributions for symbol and check nodes, respectively.
In Section III, simulation results are shown. These results
are compared with the original PEG algorithm and similar
alternatives. In Section IV, the modified PEG algorithm and
its applications in the construction of new codes are discussed.

II. MODIFIED PEG ALGORITHM

A PEG-based algorithm consists of two basic procedures: a
local graph expansion and a check node selection procedure.
Both procedures are executed sequentially in order to construct
a Tanner graph connecting symbol and check nodes in an
edge-by-edge manner. In the first procedure it is performed
the expansion of the local graph from a symbol node, this
expansion is used to detect and avoid short cycles when adding
a new edge. The result is that check nodes that will produce a
cycle are pruned, or if it is not possible to avoid a cycle, there
only remains a set of candidate check nodes producing the
largest cycle. The selection procedure is used to reduce this
list of candidate nodes according to the current graph setting.
In typical PEG algorithms, this procedure attempts to balance
the degree of any check node selecting those candidates with
the lowest check node degree.

Recent research has been focused on the case when there are
several candidate nodes after both procedures. At this point,
it is possible to improve the performance of a PEG-based
algorithm, for instance avoiding small stopping sets for the
binary erasure channel (BEC) [7]–[9] or trapping sets in the
binary symmetric channel (BSC). New definitions have also
been introduced, such as the extrinsic message degree (EMD)
or the approximate cycle EMD (ACE) [10], [11], which are
two common measures used to calculate the connectivity of
symbol nodes.

In the original PEG algorithm [6], a code is constructed
according to a symbol node degree sequence. This sequence
is previously calculated with the number of symbol nodes 𝑛
and the edge degree distribution established by 𝜆(𝑥). Note that
the original proposal does not take into account the second
polynomial, 𝜌(𝑥), for the check node degree distribution. The
algorithm proposed in this paper follows both degree distri-
butions during the code construction procedures, changing the
edge selection criterion, thus obtaining a better approach to
codes with an irregular degree distribution.

1089-7798/10$25.00 c⃝ 2010 IEEE

1156 IEEE COMMUNICATIONS LETTERS, VOL. 14, NO. 12, DECEMBER 2010

Fig. 1. Tanner graphs illustrating some characteristics of the algorithm. In
(a) the zig-zag pattern used for 2-degree symbol nodes is shown. (b) and
(c) show check nodes with different degrees, 𝑑(𝑐𝑖) and 𝑑(𝑐𝑗), and different
number of incident edges (partially assigned), 𝑑𝑘(𝑐𝑖) = 1 and 𝑑𝑘(𝑐𝑗) = 2.
First check node, 𝑐𝑖, is selected if a lowest check node degree criterion is
used, while the second node, 𝑐𝑗 , is selected if the criterion used is the FCD
(see Section II-A).

A. Free Check-node Degree (FCD) Criterion

The edge selection procedure used in this proposal differs
from the selection procedure proposed in the original PEG
algorithm. The graph is analysed to avoid local short cycles,
however check nodes are not chosen according to its number
of assigned edges, 𝑑𝑘(𝑐𝑖), i.e. its current (or partial) degree.

Instead of this, the check node with the highest differ-
ence between its partial and final-defined degree is chosen,
𝑓(𝑐𝑖) = 𝑑(𝑐𝑖)−𝑑𝑘(𝑐𝑖), i.e. the difference between the number
of currently assigned edges and the total number of edges
to be assigned. The lowest check node degree procedure is
replaced by a highest free check node degree (FCD) procedure
(see Fig. 1). The FCD concept, comes from the concept of
“sockets” previously described in [2], [12].

We introduce the concept of compliance of a constructed
code as the distance between the distribution of nodes (symbol
or check nodes) in the code and the pre-established node
degree distribution. Let 𝜌𝑗 be the pre-established probability
distribution for a degree 𝑗 check node, and 𝜌∗𝑗 the actual
probability of a degree 𝑗 check node in the constructed graph,
we calculate the 𝜌-compliance of a code as:

𝜂 =

𝑑max
𝑐𝑗∑

𝑗=2

∣∣𝜌𝑗 − 𝜌∗𝑗
∣∣ (1)

where 𝜌∗(𝑥) =
∑𝑑max

𝑐𝑗

𝑗=2 𝜌∗𝑗𝑥
𝑗−1, and 𝑑max

𝑐𝑗 = max{𝑑(𝑐𝑗)}.

B. Modified Progressive Edge-Growth (PEG) Algorithm

A modified PEG algorithm is described below.

Require: 𝑑(𝑠𝑖) ≤ 𝑑(𝑠𝑗) ∀𝑖 < 𝑗 and 𝑓(𝑐𝑖) = 𝑑(𝑐𝑖) ∀𝑖
for 𝑗 = 1 to 𝑛 do

for 𝑘 = 1 to 𝑑(𝑠𝑗) do
if 𝑘 = 1 then

if 𝑑(𝑠𝑗) = 2 then

𝐸1
𝑠𝑗 ← (𝑐𝑖, 𝑠𝑗), where 𝐸1

𝑠𝑗 is the first edge
incident to 𝑠𝑗 and 𝑐𝑖 is a check node such that
it has the lowest check-node degree under the
current graph setting 𝐸𝑠1 ∪ 𝐸𝑠2 ∪ ⋅ ⋅ ⋅ ∪ 𝐸𝑠𝑗−1 .

else
𝐸1

𝑠𝑗 ← (𝑐𝑖, 𝑠𝑗), where 𝐸1
𝑠𝑗 is the first edge

incident to 𝑠𝑗 and 𝑐𝑖 is a check node such that
it has the highest free check-node degree.

end if
else

Expand a subgraph from symbol node 𝑠𝑗 up to depth
𝑙 under the current graph setting, such that 𝒩 𝑙

𝑠𝑗 =

𝒩 𝑙+1
𝑠𝑗 , or 𝒩 𝑙

𝑠𝑗 ∕= ∅ but 𝒩 𝑙+1

𝑠𝑗 = ∅.
𝐸𝑘

𝑠𝑗 ← (𝑐𝑖, 𝑠𝑗), where 𝐸𝑘
𝑠𝑗 is the 𝑘th edge incident

to 𝑠𝑗 and 𝑐𝑖 is a check node picked from the set

𝒩 𝑙

𝑠𝑗 having the highest free check-node degree.
end if
𝑓(𝑐𝑖) = 𝑓(𝑐𝑖)− 1

end for
end for
The same notation as in [6] is used, 𝑑(𝑠𝑗) is the 𝑠𝑗 symbol

node degree (The number of incident edges. It corresponds to
the cardinality of the ensemble 𝐸𝑠𝑗 after the code construc-
tion), 𝑑(𝑐𝑖) is the 𝑐𝑖 check node degree, 𝑓(𝑐𝑖) is the number
of edges that can be added to the check node 𝑐𝑗 under the
current graph setting, such that 𝑑𝑘(𝑐𝑖) = 𝑓(𝑐𝑖)−𝑑(𝑐𝑖), 𝐸𝑠𝑗 is
the ensemble of edges connected to the symbol node 𝑠𝑗 , 𝐸𝑘

𝑠𝑗
the edge added in the step 𝑘 of the progressive construction,
and 𝒩 𝑙

𝑠𝑗 is the ensemble of nodes reached after the graph
expansion from the symbol node 𝑠𝑗 up to depth 𝑙.

A zig-zag construction for 2-degree symbol nodes (see
Fig. 1) is forced by using a special criterion when adding
the first edge to a symbol node. In this particular selection, a
list of eligible check nodes is limited to those check nodes
already connected under the current graph setting, 𝐸𝑠′ =
𝐸𝑠1 ∪ 𝐸𝑠2 ∪ ⋅ ⋅ ⋅ ∪ 𝐸𝑠𝑗−1 , i.e. to the list of check nodes that
have been chosen at least once from the first to 𝑗-th step.
This construction is used to avoid cycles with 2-degree symbol
nodes, thus obtaining a good performance in the error floor
region as the results show (see Section III below).

Relaxed edge selection: The proposed PEG algorithm can
be modified to work with a relaxed edge selection. In this
case, if there are not check nodes with free edges in the final
ensemble of candidate check nodes, 𝒩 𝑙

𝑠𝑗 , check nodes with
free edges are searched in the previous candidate ensemble,
𝒩 𝑙−1

𝑠𝑗 . This procedure improves the 𝜌-compliance, 𝜂, with the
target check node degree distribution, 𝜌(𝑥), at the expense of
the current local cycle length (see Table I).

III. SIMULATION RESULTS

Simulations results have been done for different LDPC
code construction methods. All constructed codes have a
codeword length 𝑛 = 105 and rate one half, 𝑅 = 0.5.
Performance has been measured under iterative decoding by
using belief propagation. The maximum number of iterations
for the decoder was set to 2000. Five different PEG-based
construction methods are compared: (1) the original PEG
algorithm as proposed in [6]; (2) the modified PEG algorithm

MARTINEZ-MATEO et al.: IMPROVED CONSTRUCTION OF IRREGULAR PROGRESSIVE EDGE-GROWTH TANNER GRAPHS 1157

0.4 0.6 0.8 1 1.2 1.4 1.6
 SNR Eb/N0 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 F
E

R

0.4 0.6 0.8 1 1.2 1.4 1.6
 SNR Eb/N0 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 F
E

R

Original PEG (1)
PEG prop. by Richter (2)
Prev. PEG modified (3)
PEG proposed here (4)
PEG mixed criteria (5)

Fig. 2. Frame error rate (FER) as a function of the signal-to-noise ratio
(SNR) for five construction methods, as explained in the text. Results have
been obtained with the simulation of transmissions over the AWGN channel.
Generating polynomials used in the code construction have been extracted
from Table II (with a maximum symbol node degree of 50) in [2].

0.075 0.08 0.085 0.09 0.095 0.1 0.105
 ε

10-6

10-5

10-4

10-3

10-2

10-1

 F
E

R

0.075 0.08 0.085 0.09 0.095 0.1 0.105
 ε

10-6

10-5

10-4

10-3

10-2

10-1

 F
E

R

Original PEG (1)
PEG prop. by Richter (2)
Prev. PEG modified (3)
PEG proposed here (4)
PEG mixed criteria (5)

Fig. 3. FER as a function of the crossover probability, 𝜀, over the BSC
for five construction methods (see text). Codes have been constructed using
the optimised generating polynomials from [4]. Since the 𝜌(𝑥) distribution
is more complex in this set of codes, it is possible to better appreciate the
differences among the various algorithms used for constructing the codes.

proposed by Richter in [12]; (3) a modification of (2) by
inforcing the selection of a check node in the current graph
when the first edge is added to a symbol node; (4) the modified
PEG algorithm proposed here; and (5) a mixed version, the
lowest check node degree criterion is used to connect the first
edge to a symbol node (not only to 2-degree symbol nodes as
proposed here) and the FCD criterion is used for the remaining
edges.

Figures 2 and 3 show the performance of the codes over the
additive white Gaussian noise (AWGN) channel and the BSC.
The error floor is improved using the zig-zag construction for
2-degree symbol nodes. On the other hand, within a given
graph setting, when the first check node connected to a symbol
node rule is used, there is no relevant improvement, as this
allows for different structures to the zig-zag.

IV. CONCLUSIONS

In this paper, we proposed an improved PEG algorithm. The
constructed codes comply with both an irregular check and an

TABLE I
𝜌-COMPLIANCE CALCULATED AS DEFINED IN EQ. (1)

Algorithm (1) (2) (3) (4) (5)
AWGN 1.495936 0.022604 0.016141 0.020870 0.022998
BSC 1.938722 0.050631 0.051067 0.057456 0.050050
AWGNa – 0.001482 0.001403 0.001673 0.000806
BSC – 0.001623 0.000459 0.001634 0.000510

aUsing relaxed edge-selection.

irregular symbol degree distribution. Simulation results show
that this method behaves very well in the waterfall region
while also maintaining a low error floor. Good performance
in both regions is relevant as it allows to use the same code
independently of the working point, e.g. this construction
might find application in rate compatible solutions.

ACKNOWLEDGMENT

Partially supported by project Quantum Information Tech-
nologies Madrid1, P2009/ESP-1594, Comunidad Autónoma de
Madrid. The authors acknowledge the resources and assistance
provided by the Centro de Supercomputación y Visualización
de Madrid2 and the Spanish Supercomputing Network.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[2] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599–618, Feb. 2001.

[3] A. Shokrollahi and R. Storn, “Design of efficient erasure codes with
differential evolution,” in Proc. IEEE Int. Sympos. on Inf. Theory, p. 5,
2000.

[4] D. Elkouss, A. Leverrier, R. Alleaume, and J. J. Boutros, “Efficient
reconciliation protocol for discrete-variable quantum key distribution,”
in Peoc. IEEE Int. Sympos. on Inf. Theory, July 2009, pp. 1879–1883.

[5] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Inf. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[6] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular pro-
gressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51,
no. 1, pp. 386–398, Jan. 2005.

[7] S.-H. Kim, J.-S. Kim, and D.-S. Kim, “LDPC code construction with
low error floor based on the IPEG algorithm,” IEEE Commun. Lett.,
vol. 11, no. 7, pp. 607–609, July 2007.

[8] Y.-K. Lin, C.-L. Chen, Y.-C. Liao, and H.-C. Chang, “Structured LDPC
codes with low error floor based on PEG tanner graphs,” in Proc. IEEE
Int. Sympos. on Circuits and Systems, May 2008, pp. 1846–1849.

[9] X. Jiao, J. Mu, J. Song, and L. Zhou, “Eliminating small stopping sets in
irregular low-density parity-check codes,” IEEE Commun. Lett., vol. 13,
no. 6, pp. 435–437, June 2009.

[10] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction of
irregular LDPC codes with low error floors,” in Proc. IEEE Intl. Conf.
Comm, vol. 5, May 2003, pp. 3125–3129.

[11] H. Xiao and A. Banihashemi, “Improved progressive-edge-growth
(PEG) construction of irregular LDPC codes,” IEEE Commun. Lett.,
vol. 8, no. 12, pp. 715–717, Dec. 2004.

[12] G. Richter, “An improvement of the PEG algorithm for LDPC codes in
the waterfall region,” in Proc. Int. Conference on Computer as a Tool,
vol. 2, Nov. 2005, pp. 1044–1047.

1http://www.quitemad.org
2http://www.cesvima.upm.es

