
Quantum Information and Computation, Vol. 15, No. 5&6 (2015) 0453–0477
c© Rinton Press

DEMYSTIFYING THE INFORMATION RECONCILIATION

PROTOCOL CASCADE

JESUS MARTINEZ-MATEO

Department of Applied Mathematics, Universidad Politécnica de Madrid

Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, Spain

CHRISTOPH PACHER MOMTCHIL PEEV

Safety & Security Department, AIT Austrian Institute of Technology GmbH
Donau-City-Straße 1, 1220 Vienna, Austria

ALEX CIURANA VICENTE MARTINa

Facultad de Informática, Universidad Politécnica de Madrid

Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, Spain

Received July 18, 2014

Revised September 19, 2014

Cascade is an information reconciliation protocol proposed in the context of secret key

agreement in quantum cryptography. This protocol allows removing discrepancies in two

partially correlated sequences that belong to distant parties, connected through a public
noiseless channel. It is highly interactive, thus requiring a large number of channel com-

munications between the parties to proceed and, although its efficiency is not optimal, it

has become the de-facto standard for practical implementations of information reconcili-
ation in quantum key distribution. The aim of this work is to analyze the performance of

Cascade, to discuss its strengths, weaknesses and optimization possibilities, comparing

with some of the modified versions that have been proposed in the literature. When
looking at all design trade-offs, a new view emerges that allows to put forward a number

of guidelines and propose near optimal parameters for the practical implementation of

Cascade improving performance significantly in comparison with all previous proposals.

Keywords: quantum key distribution, information reconciliation, two-way reconciliation,

cascade protocol

Communicated by: S Braunstein & M Mosca

1 Introduction

Inspired by the early 1970’s ideas of Stephen J. Wiesner about Quantum Money [1], Quantum

key distribution (QKD) emerged from the original work by Charles H. Bennett and Gilles

Brassard. In 1984 they proposed the first QKD protocol [2], commonly known as the Bennett-

Brassard 1984 (BB84) protocol. However, their contribution goes beyond, and they were also

pioneers in conducting the first QKD experiment as well as proposing novel procedures for

the classical secret key post-processing [3–6], including information reconciliation and privacy

avicente@fi.upm.es

453



454 Demystifying the information reconciliation protocol cascade

amplificationb.

Initially, in [4] they proposed a protocol for reconciling errors based on a block parity

exchange. Two correlated sequences of bit values belonging to different parties are processed

in parallel. Each of the parties divide the sequence, or frame, into blocks of equal length.

Then, the parity (i.e., the sum modulo 2 of all bits) of each block is computed and the

respective values are exchanged through a public noiseless channel. This procedure detects

all blocks with parity mismatches. For all those blocks, the parties perform a dichotomic

search (a divide and conquer algorithm similar to binary search) to find and correct one of

the errors that have occurred in the block. This procedure detects all blocks with an odd

number of errors but corrects only exactly one error per block. Therefore, the protocol needs

to work iteratively for a number of passes. In each successive pass the frame is shuffled and

further parities are exchanged to detect and correct further errors. The number of remaining

errors monotonically decreases with each pass, but there is no guarantee that all the errors in

a frame are corrected after a number of passes. The protocol is commonly known as BBBSS,

but sometimes also referred to as Binary.

Later in [6] the authors realized that in BBBSS each detected error produces side infor-

mation that could be used to correct undetected errors of previous passes. Similarly, their

modified protocol runs for a fixed number of passes. In each pass, the parties divide their

frame into blocks of equal length. The parity is calculated and exchanged for each block, and

when the parity differs the parties perform a dichotomic search to find the position of one

faulty bit. For the first pass the initial block size is calculated as a function of the estimated

error probability in the quantum channel or quantum bit error rate (QBER), and it is doubled

for successive passes. However, since whenever an error is found after the first pass it also un-

covers an odd number of additional errors masked in the preceding passes, now the algorithm

steps back to correct one of them. Sometimes this correction uncovers yet another error in a

different pass, starting a cascade of corrections. Therefore, this new protocol has been named

Cascade in reference to this iterative or cascading process of identifying and correcting errors

in previous passes.

Cascade is probably the most widely used and best known protocol for information recon-

ciliation in QKD. Although it is a highly interactive protocol, requiring many communication

rounds (or channel uses) between the parties (i.e., the parties have to exchange a large num-

ber of messages), it is reasonably efficient and easy to implement. Accordingly, a number

of modifications and optimizations have been proposed in the literature for both, the BBBSS

and Cascade protocols [7–21], but none of them have become as widespread. Most of these

works, e.g., [7–10,14,16,17,19], concentrate on how to optimize the efficiency of reconciliation

by modifying the first and subsequent block sizes. Further, some other works propose mod-

ifications to the protocol itself, for instance, combining a modified version of Cascade with

a second algorithm to improve the reconciliation efficiency [10], or the number of channel

communications [18]. An example of the latter modification is Winnow [18], and it is based

on an idea initially presented in [12] as an improvement for BBBSS. In both [12] and [18], the

authors propose to replace the dichotomic search with a linear error-correcting code (e.g., a

Hamming code [22]), compute and exchange the syndrome of each block and use these to

bNote that, by information reconciliation or briefly, reconciliation, we mean error correction in the context of
secret key agreement.



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 455

detect and correct errors reducing the number of communication rounds needed. Similarly,

several works [3,13], propose to use the result of a hash function rather than the parity value

to detect and correct errors in a block. Finally, other works propose combining Cascade with

an advantage distillation protocol [7,8,16,17] and, although interesting, these are not part of

the scope of this work which is mainly focused on QKD.

All the previous modifications that concentrate on Cascade try to improve it either by op-

timizing the parameters in the algorithm or by modifying the protocol itself, e.g., exchanging

parities of blocks obtained by another method but still keeping the idea of the cascading pro-

cess. This contribution studies the possible design options in Cascade, comparing them with

the original protocol and with the most significant modifications published. The comparison

is made on the grounds of a full set of parameters, so that their effects can be fairly assessed,

in contrast to the limited and focused ones published up to now. Note that in the design of

error correcting codes it is well known that there is not a single optimum [23], but that a

set of trade-offs have to be chosen instead. Previous modifications and improved versions of

Cascade have concentrated almost exclusively on its reconciliation efficiency, without regard

to other major features. This has produced a somewhat skewed view of the real capabilities

of Cascade, hiding aspects that are important from the point of view of code design and also

significant in practice. Here a number of simulations of the protocol and its most significant

variants are performed to study not only the efficiency but also other characteristics that

are important for its practical application, such as the number of communication rounds and

the failure probability, among others. When looking at all the salient characteristics at the

same time a different view emerges, showing that, for instance, an increased failure probabil-

ity results from some of the supposed advantages of these modifications. This allows us to

propose a set of guidelines and optimizations, which would boost its performance. Table 1

summarizes all the different versions of Cascade simulated here, their parameters, and those

optimizations considered for each version. Simulated results are also analyzed considering

recent studies of Cascade [21, 24], and practical implementations [25].

The rest of this paper is organized as follows. In Section 2 we introduce the information

reconciliation problem, the concept of efficiency and some other definitions needed to analyze

the performance of a reconciliation protocol. In Section 3 we review the original Cascade

and some of the proposed improvements: modified versions of the protocol and optimized

parameters. Then, their performance is compared in Section 4. As a result of this analysis

we propose a Cascade version that improves on the previous ones. Finally, we present our

conclusions in Section 5.

2 Preliminaries

Let X and Y be two correlated discrete random variables with binary alphabet A = {0, 1}
and joint probability pXY (x, y) = Pr(X = x, Y = y). Note that, for convenience, we omit

the random variables when there is no chance of confusion. The probability p(x, y) can be

also written as p(y|x)p(x), such that y can be seen as the output of a memoryless channel

characterized by the transition probability p(y|x) with input x. In the discrete-variable QKD

case, errors or discrepancies between variables x and y belonging to two distant parties, Alice

and Bob, respectively, are assumed to be the consequence of a transmission over a binary

symmetric channel with crossover probability ε, BSC(ε). The channel parameter ε is usually



456 Demystifying the information reconciliation protocol cascade

Table 1. Original, modified and optimized versions of Cascade analyzed in the manuscript. A frame

of length n = 104 bits was considered for all versions of Cascade, except for the last optimization
labeled as (8) where the length of the frame used is n = 214. The new optimizations presented in

this paper are the ones labeled from (3) to (8).

Protocol Block sizes (approx.) Cascade BICONF Block Shuffling Singl.
k1 k2 ki passes reuse blocks

orig.
Ref. [6]

0.73/Q 2k1 2ki−1 4 no no random no

mod. (1)
Ref. [10]

0.92/Q 3k1 – 2 yes no random no

opt. (2)
Ref. [19]

0.8/Q 5k1 n/2 10 no noa random no

opt. (3) 1/Q 2k1 n/2 16 no no random no
opt. (4) 1/Q 2k1 n/2 16 no yes random no
opt. (5) 1/Q 2k1 n/2 16 no yes determ. no
opt. (6) 1/Q 2k1 n/2 16 no yes random yes

opt. (7) 2dlog2 1/Qe 4k1 n/2 14 no yes random no

opt. (8) 2dαe 2d(α+12)/2e n/2b 14 no yes random no

aAlthough reuse of subblocks is also suggested in the optimized version of Cascade proposed in [19], this
technique is not included in the simulation of that proposal in order to fairly compare the effect in the
efficiency, communication rounds and failure probability of the suggested block sizes in [19] with the results
of the original Cascade protocol.
bα = log2(1/Q)− 1

2
, k3 = 212 = 4096 and ki = n/2 for i > 3.

referred to as quantum bit error rate Q or QBER.

Let the sequences x ∈ An and y ∈ An be the outcomes of n independent and identically

distributed (i.i.d.) instances of X and Y , respectively. Note that, hereinafter, we refer to

these sequences as frames. The problem of reconciliation is equivalent to a particular case

of source coding with side information, also known as Slepian-Wolf coding [26]. Given a

source X and a decoder with access to side information Y , no encoding of X shorter than

H(X|Y ) allows for a reliable decoding in the receiver [26]. Thus, the minimum information

is given by the conditional entropy H(X|Y ). Let m be the length of the message exchanged

for reconciling the discrepancies between x and y. Then the efficiency of an information

reconciliation procedure can be defined as:

fEC =
m

nH(X|Y )
. (1)

Since nH(X|Y ) is the minimum length of the message transmitted to reconcile the frames

x and y, we have that fEC ≥ 1, and fEC = 1 stands for perfect reconciliation.

In the case of a BSC(ε) the reconciliation efficiency can be written as:

fEC =
1−R
h(ε)

(2)

where the binary Shannon entropy h(ε) = −ε log2 ε − (1 − ε) log2(1 − ε), and R is the ratio

of information transmitted, R = 1 − m/n. The difference 1 − R is the ratio of redundant

information disclosed for reconciling errors.

Note that a different interpretation for the reconciliation efficiency is often used in the

literature. While we have defined it as a measure of the percentage of additional information

disclosed over the Shannon limit, in other works the efficiency is defined as the ratio of the



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 457

capacity achieved for a given communication channel. This other value for the reconciliation

efficiency is then given by:

β =
R

1− h(ε)
, (3)

such that

1− fECh(ε) = β(1− h(ε)). (4)

Throughout this contribution we only use the first definition, but ultimately we also pro-

vide some values for the second one in order to compare our results with results presented

elsewhere.

In addition, any error-correcting method has to be analyzed taking also into account its

robustness. We use two measures for robustness: (i) the failure probability or frame error

rate, here denoted by εEC , is the probability that after reconciliation the frames belonging

to both parties differ by at least one bit, (ii) the residual error or bit error rate is the ratio

between the number of different bits in both frames after the reconciliation process and the

frame length n. Note also that, hereafter, we use the terms frame error rate and bit error

rate rather than failure probability and residual error, respectively.

3 Cascade protocol and modifications

For a practical consideration of this work and a proper interpretation of the results in the next

section, we provide first a detailed description of Cascade, thus including our interpretation

of some points not described in the original and modified versions of this protocol.

Then, we discuss the possible modifications of Cascade, but only consider those methods

that preserve the iterative parity exchange procedure that gives name to the protocol. The

modifications considered are classified either as protocol modifications, when the rules applied

to the iterative process differs from the original ones, or as protocol optimizations, when

different parameters are proposed or when a particular interpretation of the protocol differs.

For each case we select the main representatives in the literature and analyze its behavior

in Section 4 as a basis to propose a set of rules that allow to optimize Cascade under all

situations. Care has been taken to study all the relevant magnitudes and not to concentrate

on just one single aspect, as it has been the case in many of the previous studies.

3.1 The original protocol

As described above, Cascade works in successive passes. Let ki be the block size used in the

i-th pass of the algorithm. In the first pass, the parties divide their frames into blocks of equal

length. The block size k1 of the first division is agreed upon by both parties and calculated

as a function of Q, the QBER. As suggested in [6, 27] k1 ≈ 0.73/Q is used. In particular, for

the results labeled as the original Cascade below, we used the smallest integer greater than

or equal to this approximation, i.e., k1 = d0.73/Qe. Then, the parties compute a parity per

block, exchange this through a public noiseless channel, and perform a dichotomic searchcif

cBoth parties perform the following steps: (i) divide the block into two halves, (ii) calculate the parity of the
first half, and (iii) exchange that parity. If Alice and Bob obtain different parities, a bit error has to be in the
first half and they continue their bisection and parity exchange there. If they obtain the same parity for the



458 Demystifying the information reconciliation protocol cascade

their parity values differ. However, note that in a practical implementation of Cascade, blocks

and parities are processed in parallel. Therefore, instead of exchanging messages with single

parities typically a set of parities (i.e., a syndrome) are processed and communicated. In

what follows, all the non-dependent information is collected in one message until the protocol

can no longer proceed and the message is transmitted. Our results show then the minimal

number of messages needed. Note that dichotomic searches (i.e., subblock parities) are also

processed in parallel.

In each following pass the block size is doubled, ki = 2ki−1, and the process of exchanging

parities and correcting errors is repeated. From the second pass onward, each detected error

can be used to correct further errors in other already completed passes. For instance, suppose

that an error is detected during the second pass. This means that during the first pass

this bit error was inside a block B1 with an even number of errors, and has thus remained

undetected. Consequently, there must be a second error in B1 that can now be corrected.

The cascade process begins always from the first pass onward to correct as many errors as

possible disclosing the minimum number of parities required by a dichotomic search. Note

that in the original description of Cascade [6], errors (i.e., discrepancies between the frames to

reconcile) are assumed to be i.i.d., such that no random shuffling is proposed prior to the first

pass, but in order to detect new errors the frame is randomly shuffled between the following

passes. Note also that, after the end of each pass an even number of errors (possibly zero)

remains in the frame; thus the parity of the last block is determined by the parities of all

the previous blocks and need not be exchanged from the second pass onward. This is similar

to the dichotomic search in which only the parity of the first half needs to be exchanged.

Also, from an information leakage point of view, in the second and all following passes the

last block’s parity is redundant and need not be taken into account in the calculation of the

protocol’s leakage. Finally, the protocol concludes when four passes have been completed.

As suggested in [6], these four passes have proved to be empirically enough to remove all

discrepancies in a frame of length 104 bits.

3.2 Modified protocols

Most of the modified versions of Cascade, e.g., Winnow [18], involve the substitution of the

parity exchange by the use of a one-step (forward) error correcting method. However, this

approach is not compatible with the iterative parity exchange process described above. The

only one exception in this respect is discussed in [10]. In this modification, after the first

two passes of the original Cascade, the iterative process continues with a different algorithm

referred to as BICONF. This algorithm is a slightly different version of the one already proposed

in [6] with an identical name.

In [10] the block sizes used for the first two passes of Cascade, k1 and k2, respectively, are

given by:

k1 =

⌊
4 ln 2

3Q

⌋
≈ 0.92/Q, k2 =

⌊
4 ln 2

Q

⌋
≈ 3k1. (5)

These values have been derived from the observation that, after the first and second passes,

approximately p1 = 50% and p2 = 100% of the bit errors have been corrected, respectively.

first half, a bit error must be in the second half and they continue their bisection and parity exchange there.
In this way they continue until they have located the exact position of a bit error in at most dlog2 k1e steps.



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 459

Assuming p1 = 1/2 and p2 = 1, the proposed values should minimize the number of exchanged

parities, thus optimizing the reconciliation efficiency. Note that, compared to the values in the

original Cascade (see Section 3.1), this suggests that the number of errors corrected during

the first two passes is now lower than in the original protocol (it can be shown that the

probability to correct errors in the first pass strictly decreases with increasing block size k1).

After these two steps, the iterative BICONF algorithm is executed. It works as follows: In

each iteration, first, the parties agree on a random subset of bits from their frames. Then, they

compute and exchange the parity value of this subset, and perform two dichotomic searches

if their parities differ, one for the chosen subset and the other for the complementary subset

(i.e., the subset of bits that were not selected). The algorithm chooses new random subsets of

bits in each iteration, and stops when it has either performed s iterations [6], or s successive

iterations without finding new errors [10]. We consider here the latter choice to be s = 10.

Note that the process of choosing the random subset of bits is not specified. We decided

to choose it by performing independent Bernoulli processes with success probability one half

for each bit of the frame. This divides the frame into two subsets (a chosen subset and its

complement w.r.t. the frame) of similar size.

In Section 4 it is shown that this modified version improves the efficiency of Cascade.

However, the extensive simulations performed show that the frame error rate is considerably

higher in this protocol than in the original Cascade. Therefore, the efficiency improvement

comes at the cost of a higher frame error rate—a fact that is typical for one-way reconciliation

with block codes. The results in Section 4 also highlight that, as already shown in [19], one

pass of Cascade with a block size equal to one half of the frame length (i.e., ki = dn/2e)
works effectively as one iteration of BICONF, but with the advantage of possibly correcting

further errors in previous passes.

3.3 Other runtime optimizations and Cascade parameters

In the following we chronologically describe four possible optimizations of Cascade that have

been previously proposed in the literature, but are implemented and analyzed together for

the first time here: (i) improving the shuffling between passes, (ii) removing singleton blocks

after each pass, (iii) optimizing block sizes, and (iv) reusing subblocks resulting from dividing

the frame in the dichotomic search. The efficiency for all these optimized versions of Cascade

is discussed later in Section 4 on the basis of extensive simulations that we have carried out.

Originally, two novel ideas for optimizing Cascade have been put forward in [11, 14]. In

an unpublished draft, the author suggests that the protocol can be optimized by improving

the random shuffling between passes and discarding singleton blocks in successive passes. By

singleton the author refers to a subblock of size one for which the value is knownd. Note that

then the length of the frame to reconcile decreases with each pass of the algorithm, and the

block sizes suggested for other proposals are probably not optimal for this. However, the

author of [14] fails to propose any method for improving the shuffling. The first practical

description of a modified shuffling is proposed in [15]. Instead of using a random shuffling

between passes, the author of this publication proposes two methods to deterministically

distribute the bits of a block in a pass into different blocks in the following pass, in an

attempt to uniformly distribute the errors in successive passes.

dEither because it has been exchanged or can be deduced from other, previously known, subblock parities.



460 Demystifying the information reconciliation protocol cascade

A different avenue is to leave the Cascade protocol unchanged, but modify its parameters

instead. Some optimized block sizes are also suggested in [15] and a comprehensive search

for the optimal parameter set was later done in [19] for frames of length 104 bits. Different

values for the first block size and its subsequent size increments were analyzed. The optimal

efficiency of Cascade was empirically determined to occur for k1 = 0.8/Q, k2 = 5k1 and

ki = n/2 for 3 ≤ i ≤ 10. Unfortunately, as in the case before (see previous Subsection), the

size of the simulation was neither large enough to determine the frame error rate nor was

this aspect taken explicitly into account to produce a unskewed comparison with the original

Cascade.

Finally, another novel improvement of Cascade is also proposed in [19]. It was emphasized

that, according to the original description of Cascade, the protocol only considers blocks

resulting from dividing the frame (i.e., the blocks of size ki for the i-th pass) at the beginning of

each pass. However, in a proper interpretation, also those blocks resulting from the dichotomic

search can be reused. The protocol can take advantage of the smaller blocks for correcting

errors during the cascade process disclosing fewer parities. As shown below, a comprehensive

record of all processed blocks leads to a further improvement in efficiency.

4 Simulation results

Simulation results were computed for the original Cascade protocol [6] and the modified and

optimized versions proposed in [10, 14, 15, 19]. Initially, the original Cascade is compared

to the modified protocol described in [10], that uses two passes of Cascade and subsequent

iterations of BICONF (see subsection 3.2). Then, a modification of [10] is proposed by replacing

BICONF for a number of passes of Cascade with block size half of the frame length, as already

hinted in [19], but using the first block size suggested as optimal in our previous simulations.

Results are later compared to a version using the block sizes suggested in [19]. Finally, those

novel optimizations described in [14,15,19] are also considered, and a fully optimized version

is presented for the first time.

Simulations were performed that cover the full error range of interest in BB84 using

as a base frame length n = 104 bits. We consider this value to be a good choice, given

that hardware implementations are feasible for this size but become problematic for bigger

sizes (e.g., due to physical memory limitations of FPGAs). This frame length was also used

in [6,10,14,15,19], which allows for a fair comparison between these proposals as well as our

results. Other frame lengths (from n = 103 to n = 106) have been used whenever necessary.

For all simulations, correlated pairs of random bit frames were generated using a congruential

pseudo random number generator with a common (previously shared) seed. Given the channel

parameter Q (i.e., the quantum bit error rate, QBER), errors were generated in one of the

frames simulating independent Bernoulli processes with success probability Q. Reconciliation

efficiency, communication rounds, frame error rate and bit error rate have been exhaustively

computed for each version considered in order to ensure a fair comparison. For instance,

to analyze the latter two quantities we have simulated more than 106 frames for all values

reported here.



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 461

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3

R
ec

o
n

ci
li

at
io

n
 e

ff
ic

ie
n

cy
 f

E
C

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3

R
ec

o
n

ci
li

at
io

n
 e

ff
ic

ie
n

cy
 f

E
C

Cascade orig. n=10
4 n=10

5
n=10

6

Cascade mod. (1) n=10
4 n=10

5
n=10

6

k1=16

k1=8

Fig. 1. Comparison of the average reconciliation efficiency as a function of the quantum bit error

rate Q for the original Cascade protocol [6] and the version of [10] (i.e., modified version (1)
throughout this paper). The length of the frames used is denoted by n.

4.1 Original and modified versions of Cascade

Fig. 1 shows the average reconciliation efficiency as a function of QBER for the original

Cascade [6] and the modified version proposed in [10]. Efficiency is calculated as defined in

Eq. (2). This figure shows that the efficiency of the modified version of Cascade improves

for this frame length when the error rate is greater than approximately 0.5%. However, the

efficiency of both protocols in the region of QBER below ≈ 1% is not directly comparable

because they have completely different frame error rates, as shown in Fig. 4. Results for longer

frames have also been computed, but for a much smaller number of error rates. For these

error rates, Cascade’s efficiency does not improve for longer frames while it does, although

marginally, for the modified version. Therefore, a first strength or weakness (arguably) of

Cascade to be highlighted is that short frames can be corrected as efficiently as longer ones.

On the other hand, modified versions of Cascade may slightly improve the efficiency by

increasing the length of the frame to reconcile. The efficiency curves for both protocols

exhibit a sawtooth behavior due to the discreteness of the block sizes ki, 1 ≤ i ≤ 4 (jumps

occur at those values of Q where k1 changes its integer value, and subsequently k2, k3 and

k4). Some of these k1 values are marked in the figure. Note that, for instance, the point

marked as k1 = 8 is the value for which the protocol decrements the first block size from 9

to 8. Thus, a block size of 9 bits is used for the first pass in the region immediately to the

left of that point, and blocks of size 8 to the right. This reduction in the block sizes directly

affects the reconciliation efficiency since the number of blocks per frame increases, hence the

number of disclosed parities. As shown below, the large jumps arise from a poor choice of the

initial block size k1.

The same simulations that we present in Fig. 1 are also used in Fig. 2 to compare the



462 Demystifying the information reconciliation protocol cascade

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

20

40

60

80

100

120

140

C
h

an
n

el
 u

se
s

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

20

40

60

80

100

120

140

C
h

an
n

el
 u

se
s

Cascade orig.

Cascade mod. (1)

k1=16, k2=32 k1=8, k2=16

k1=16

k1=8

k2=28

k2=27

k2=26

Fig. 2. Comparison of the number of channel uses as a function of the quantum bit error rate Q
for the original Cascade protocol [6] and the version (mod. (1)) of [10].

number of channel uses required by Cascade and its modified version. By channel uses

we mean the number of communication rounds or pair of messages exchanged through the

noiseless channel to disclose parity valuese. Fig. 2 shows the number of channels uses as a

function of QBER for frames of length 104 bits. As shown, in this case the price to pay for

improving the reconciliation efficiency is an increase (a significant one, more than double) in

the number of channel uses. However, later we show that this is not entirely true, since the

frame error rate has also to be taken into account (see Fig. 4 below). As in the previous

figure, the curves for both protocols also exhibit a sawtooth behavior due to the discreteness

of the block sizes. Some of the respective k1 and k2 values are also marked. The effect of

k2 is also clearly to be noticed for the modified version of Cascade as a smaller amplitude

sawtooth behavior seen for the same value of k1. Note however that the effect with respect to

the communication rounds is the opposite to the one observed in the efficiency analysis: the

number of communications decreases when the block sizes also decreases. As shown in the

curve for the modified version of Cascade, this effect due to changes in k1 is more pronounced

compared to changes in the other block sizes.

In Fig. 3 channel uses are shown as a function of the length of the frame to reconcile.

Only the original Cascade is considered here. The number of channel uses are computed by

increasing the frame length for a constant QBER value Q. Three different values, Q = 1%, 2%

and 5%, are considered in the figure. As it was already shown in [25], the number of channel

uses is an increasing function of the frame length. However, here we also show results for

shorter frames than those considered in [25]. Note that the number of channel uses depends

eNote that we do not consider other uses of the communication channel, such as the messages exchanged to
synchronize the frame shuffling. Note also that we consider just one use of the channel although two messages
are exchanged between the parties at once (i.e., simultaneously), each one traveling in opposite directions [28].



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 463

103 104 105 106 107

Frame length n

20

40

60

80

100

120

140

C
h

an
n

el
 u

se
s

103 104 105 106 107

Frame length n

20

40

60

80

100

120

140

C
h

an
n

el
 u

se
s

Cascade orig.

Q=1%

Q=2%

Q=5%

Fig. 3. Channel uses (communication rounds) as a function of the frame length n for the original

Cascade protocol [6].

on the frame length, block sizes and QBER. On the one hand, for higher QBER values the

block sizes decrease, and accordingly the depth of the binary search tree also decreases, thus

the protocol would require less channel uses. On the other hand, the number of channel uses

should increase with both the frame length and the QBER due to the effectiveness of error

backtracking. Indeed, as shown below, the frame and bit error rates decrease in the original

Cascade for larger frames and higher QBER values, which happens at the cost of an increased

number of communication rounds. The net behavior, resulting from these partly conflicting

tendencies is illustrated in Fig. 3.

Fig. 4 shows the frame error rate as a function of QBER. Again, results are shown for the

original Cascade [6] and the modified version proposed in [10]. Note that the frame error rate

does not take into account the number of erroneous bits at the end of the protocol. Contrary

to what happens with other reconciliation methods, when Cascade ends there is no validation

method to determine whether the protocol could have failedf. As shown, the frame error rate

is significantly higher for the modified version of Cascade. Therefore, although the efficiency

improves, the fraction of successfully reconciled frames worsens. Different frame lengths have

been considered and compared, and it is evident that while the frame error rate decreases

with the frame length in Cascade, this is not the case for the modified version, for which for

lengths of 105 bits the frame error rate remains remarkably constant at 10−3.

Note that with respect to this parameter we have found significant discrepancies with other

results published in the literature. In [10] the authors reported that “the modified protocol

fFor instance, when working with linear codes, the syndrome of the decoded word confirms whether it cor-
responds to a codeword. In this case, we assume that the decoding was successful although there is still a
non-zero probability of having undetected errors. Otherwise, it is known that the decoding process failed.
However, note that in QKD post-processing information reconciliation is always followed by a validation phase,
which guarantees that the maximal frame error rate is below a certain value, whereby the latter can be chosen
at will and is part of the overall security figure of merit of the protocol.



464 Demystifying the information reconciliation protocol cascade

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

106

105

104

103

102

101

1

F
ra

m
e 

er
ro

r 
ra

te

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

106

105

104

103

102

101

1

F
ra

m
e 

er
ro

r 
ra

te

Cascade orig.

n=10
3

n=10
4

n=10
5

Cascade mod. (1)

n=10
3

n=10
4

n=10
5

Fig. 4. Frame error rate (failure probability) as a function of the quantum bit error rate for the

original Cascade protocol [6] and the version (mod. (1)) of [10].

never failed”. However, they only simulated one hundred frames, which is clearly not enough

to empirically verify frame error rates of the order of 10−3, let alone assume that this is a fair

comparison with the original Cascade. A similar behavior, i.e., with zero frame error rate,

was also reported in [19], even though the frame error rate of this protocol was previously

known not to be negligible. For instance, in [14] the author suggests that a frame error rate

of approximately 10−6 is achieved for frames of length 104 bitsg. A significant problem in

the interpretation of these results arises from the fact that the small number of simulated

frames also affects the efficiency and produces, spuriously, better values than those shown

here. Having good statistics is extremely important in order to have a precise efficiency value:

the error probability in the last passes of Cascade (e.g., passes 3 and 4) is known to be low

and if not enough samples are used, an effective zero frame error rate might be found. As an

example of this effect, we have performed two simulations of a hundred frames for Q = 2%

and Q = 5% with zero frame error rates, the efficiencies obtained are fEC = 1.08171 and

1.09264, respectively; while the “real” efficiencies, based on good statistics, are slightly worse

being fEC = 1.09013 and 1.09541 for 2% and 5% of QBER, respectively.

Finally, Fig. 5 shows the bit error rate (see Section 2 for the definition) as a function of

QBER. Unlike in Fig. 4, this ratio reflects the number of errors remaining in the frame at the

end of the protocol. As in the previous figures, simulation results computed for the original

and modified Cascade, and different frame lengths are presented. In the figure, two additional

curves are included, labeled as (A) and (B), corresponding respectively to the bit error rate

after the first two passes of the original Cascade and two passes in the modified one without

BICONF. It is seen that Cascade works better due to its capability of tracing back extra errors.

gWe have not confirmed this result since it is reported for a QBER of 15%, a value completely out of the scope
of the present work



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 465

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

1011

1010

109

108

107

106

105

104

103

102

101

B
it

 e
rr

o
r 

ra
te

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

1011

1010

109

108

107

106

105

104

103

102

101

B
it

 e
rr

o
r 

ra
te

Cascade

orig.
n=10

3

n=10
4

n=10
5

Cascade

mod. (1)
n=10

3

n=10
4

n=10
5

(A)

(B)

Fig. 5. Bit error rate (residual error) as a function of the quantum bit error rate for the original

Cascade protocol [6] and the version (mod. (1)) of [10]. The curves labeled (A) and (B) correspond

to the bit error rate after the first two passes of the original Cascade (A) and two passes in the
modified one without BICONF (B).

Later we use this bit error rate as an estimate of the suitability of the third and subsequent

block sizes.

4.2 Simulating Cascade as a rateless protocol

In this section we study the ability of the protocol to adapt to variations in the communication

channel, i.e., the rateless behavior of Cascade is analyzed. To this end simulations have been

carried out using two different input parameters instead of only one. We varied (i) the error

rate value p used to initialize the protocol, i.e., the first block size k1 is now derived from

p and not from Q; and (ii) Q the actual quantum bit error rate, i.e., the error rate value

used to generate discrepancies in the correlated frames. Note that p may stand for a (poor)

estimate of Q. Therefore, the following simulations show how the protocol behaves under

time-varying channel conditions. In addition, as discussed below, these simulations give more

insight about some parameters used in the protocol (e.g., block sizes) and suggests possible

optimizations. We remind that the first block size k1, and consequently the subsequent block

sizes, are chosen depending on the QBER estimate.

Fig. 6 shows the average reconciliation efficiency as a function of QBER. Three different

cases have been considered using a constant estimate of p = 1% (red), p = 2% (green), and

p = 5% (blue), respectively for the initialization of Cascade. Following the description of the

original Cascade protocol [6] (see Section 3.1) results have been computed for frames of bit

length n = 104. In this case we get k1 = 73, k1 = 37, and k1 = 15, respectively. The efficiency

of an unmodified Cascade is also depicted in the figure, and as expected, it coincides with the

new simulations whenever Q = p. Interestingly, it is shown that the efficiency improves in

a range of QBER values greater than the error rate considered for the initialization, i.e., for



466 Demystifying the information reconciliation protocol cascade

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3

R
ec

o
n
ci

li
at

io
n
 e

ff
ic

ie
n
cy

 f
E

C

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3

R
ec

o
n
ci

li
at

io
n
 e

ff
ic

ie
n
cy

 f
E

C

Cascade orig. n=10
4

k1=73, p=1%

k1=37, p=2%

k1=15, p=5%

k1=16

k1=14

k1=13

k1=64

k1=32

Fig. 6. Average reconciliation efficiency, fEC , as function of the quantum bit error rate when k1
is fixed over a larger interval of Q than originally proposed [6]. For comparison also the efficiency

of the original Cascade protocol [6] is shown.

Q > p. This improvement coincides with the decreasing segments that produce a sawtooth

shaped efficiency curve, as shown in the figure for k1 = 13, 14, 15 and 16. Curves for k1 = 32

and k1 = 64 are also depicted to show that these values coincide with local minima in the

global efficiency curve of the original Cascade. Apparently, these results suggest that larger

block sizes must be considered for the first block size k1.

As expected, a price to pay for a better reconciliation efficiency is a sharp increase in the

number of exchanged messages (not shown), due to more errors being detected and corrected

during the later algorithm passes. However, in the subsequent Fig. 7 it is shown that —

surprisingly and contrary to what one might expect from the above results— the frame error

rate is not significantly affected: while the efficiency reaches its optimum for Q > p, the

frame error rate has still the same order of magnitude. In consequence, these results clearly

show that the efficiency of the original Cascade protocol can be improved just by updating

the initial block size, k1, without modifying the rest of the protocol, and only penalizing its

practical use in high latency networks due to an increased interactivity.

Thus, we empirically show that the efficiency of the original Cascade is optimal for the

three cases p = 1%, 2% and 5% when Q ≈ 1.46%, 2.85% and 6.87%, respectively. Taking into

account that the frame error rate does not significantly increase, and disregarding the channel

uses, it follows that (for frames of bit length n = 104) the block size k1 = 73 is optimal when

Q = 1.46% (i.e., k1 = 1.0658/Q). For the three cases considered we get that the criterion

k1 ≈ 1/Q is presumably optimal. In other words, the simulated results suggest using as the

first block size the value that divides the frame into blocks with one error on average. Note

that this is a criterion that was very recently also suggested in [21], and according to the

evidence, it tries to maximize the number of errors corrected disclosing the minimum number



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 467

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

106

105

104

103

102

101

F
ra

m
e 

er
ro

r 
ra

te

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

106

105

104

103

102

101

F
ra

m
e 

er
ro

r 
ra

te

Cascade orig. n=10
4

k1=73, p=1%

k1=37, p=2%

k1=15, p=5%

Fig. 7. Frame error rate (failure probability) as a function of the quantum bit error rate when k1
is fixed over a larger interval of Q than originally proposed [6]. For comparison, also the frame

error rate of this original Cascade protocol is shown.

of parities during the first pass.

4.3 Some protocol optimization guidelines

From the above results we can infer some guidelines that may be useful in finding the optimal

block sizes for Cascade: (i) first, from Figs. 6 and 7 it seems that the size for the initial

block should be slightly larger than the one proposed in the original protocol, in accordance

with [10,19,21], and (ii) for frames of length 104 bits, the bit error rate after the second pass

suggests block sizes for the third and subsequent passes larger than half of the frame length.

As shown in Fig. 5, after the second pass the bit error rate is very low and its inverse is larger

than n/2 (where n is the frame length). In this case, the use of smaller blocks reveals many

parities corresponding to blocks without errors. Note that, the number of parities disclosed

for detecting and correcting errors during the i-th pass is approximated by dn/kie+ bi log2 ki,

where bi is the number of blocks with parity mismatch for which a binary search is performed.

Thus, assuming that only two errors remain in the frame and those are detected and corrected,

a block size of n/2 is approximately optimal. This last conclusion also somehow agrees with

the proposal in [10]; however, for reasons not explained in that paper, the authors in [10] use

BICONF for further passes instead of continuing taking advantage of the error backtracking

feature of Cascade to correct further errors in previous passes.

Unfortunately, no clear criterion for the second block size k2 can be extracted. We might

mistakenly infer that the optimal value for the second block size should be calculated similarly

to the first block size. We can calculate this size using the expected error rate after the first

pass as proposed in [6]. Adopting the same notation, let k1 = d1/Qe and E1 be the expected

number of errors in a block after the completion of the first pass, we get:



468 Demystifying the information reconciliation protocol cascade

E1 =
1 + (1− 2Q)d1/Qe

2
. (6)

Therefore, the block size for the second pass of Cascade will be k2 = k1/E1 in order to

optimize the number of errors that can be corrected during that pass. This size corresponds

to approximately k2 ≈ 1.8k1. However, simulations with these parameters quickly show that

the efficiency in fact worsens. This is because the assumption above ignores the backtracking

error correction carried out by Cascade: while larger block sizes are less able to correct errors,

the cascade effects more than compensate this and efficiently corrects errors using the block

from the first pass. For this reason we chose to use the original protocol rule for selecting the

second block size.

In summary, we propose here a first optimized version of Cascade with the following

parameters: k1 = 1/Q, k2 = 2k1 and ki = dn/2e for i > 2; where the number of passes i

depends on the target frame error rate. As shown below, this initial approach is already closer

to being optimal than any of the previous proposals.

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3

R
ec

o
n
ci

li
at

io
n
 e

ff
ic

ie
n
cy

 f
E
C

Cascade orig.

Cascade mod. (1)

Cascade opt. (2)

Cascade opt. (3)

Fig. 8. Average reconciliation efficiency, fEC , of the original Cascade (black) and three modified
versions: (1) the modified protocol proposed in [10] (blue), (2) the version using the optimized
parameters suggested in [19] (red), and (3) the version proposed here using 16 passes (green).
More details are given in the text.

Fig. 8 shows the average reconciliation efficiency as a function of QBER. Results were

computed again for frames of length n = 104 bits. The original Cascade (black) is compared

to three modified versions: (1) the modified protocol proposed in [10] combining the first two

passes of Cascade with BICONF(10) (blue), (2) the version using the optimized parameters

suggested in [19], i.e., k1 = 0.8/Q, k2 = 5k1 and ki = n/2 for 2 < i ≤ 10 (red), and (3)

the version using the parameters proposed above and carrying out 16 passes (green). As

shown, the efficiency is similar in the three proposed optimizations, despite using different



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 469

block sizes for the first and second passes. It corresponds approximately to closing half of the

gap between the efficiency of the original Cascade and the theoretically optimal efficiency.

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

20

40

60

80

100

120

140

160

C
h

an
n

el
 u

se
s

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

20

40

60

80

100

120

140

160

C
h

an
n

el
 u

se
s

Cascade orig.

Cascade mod. (1)

Cascade opt. (2)

Cascade opt. (3)

Fig. 9. Channel uses of the original Cascade (black) and three modified versions: (1) the modified

protocol proposed in [10] (blue), (2) the version using the optimized parameters suggested in [19]

(red), and (3) the version proposed here using 16 passes (green). More details are given in the
text.

Next, Fig. 9 shows the number of channel uses as a function of QBER for the four cases

considered in Fig. 8. As shown, all the optimizations exceed the number of communication

rounds of the original protocol, but the one proposed here shows the smallest number of

channel uses of all three alternatives despite having used 16 passes.

Finally, the frame error rate is shown in Fig. 10 for the four cases considered in the

previous figures. These results show that, similarly to the other two Cascade optimizations,

the parameters proposed here also achieve a frame error rate independent of the QBER, which

is however smaller by more than one order of magnitude compared to the frame error rate

achieved by the previous two optimizations, and which is comparable to the average frame

error rate of Cascade. Note that, from the third pass onward, the frame error rate in the

three studied optimizations decreases with the number of passes approximately as 2−s, where

s is the number of passes executed with a block size of half of the frame length. Curiously,

this block length choice was suggested in [10, 19] although without further justification and

somewhat in contradiction with the claims in these publications: the inferred frame error rate

of zero gives no motivation for the number of passes suggested in both protocols. Later we

discuss how the frame error rate influences the protocol and we try to justify the optimal

number of passes that the algorithm must perform to achieve the best performance.

4.4 Further optimized implementations of Cascade

Apart from the optimization of block sizes, we also analyze further optimization in the im-

plementation of Cascade. In this respect we utilize optimization approaches outlined in



470 Demystifying the information reconciliation protocol cascade

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

106

105

104

103

102

101

F
ra

m
e 

er
ro

r 
ra

te
 ε
E
C

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

106

105

104

103

102

101

F
ra

m
e 

er
ro

r 
ra

te
 ε
E
C

Cascade orig.

Cascade mod. (1)

Cascade opt. (2)

Cascade opt. (3)

Fig. 10. Frame error rate (failure probability) of the original Cascade (black) and three modified

versions: (1) the modified protocol proposed in [10] (blue), (2) the version using the optimized

parameters suggested in [19] (red), and (3) the version proposed here using 16 passes (green).
More details are given in the text.

Section 3.3.

Fig. 11 presents the efficiency as a function of QBER for several implementations in ad-

dition to an implementation of the original Cascade (black curve). The first optimization

approach, that we have put forward and analyzed in detail on the basis of simulation results

above, corresponds to the green curve, labeled with (3). First we compare it to the improve-

ment in efficiency arising from block reuse as proposed in [19]. This approach is the basis for a

further implementation of Cascade labeled with (4) (brown curve), which uses a record of all

processed blocks per pass and the optimized parameters suggested above. From the figure it

is clear that this implementation leads to a significant increase of the efficiency, which comes

at the cost of only higher memory usage, since pointers to all subblocks have to be kept, and

a more complicated implementationh. Note that, in [19] it is suggested, first to sort the list

of subblocks by size, and then to correct the shortest one. However, we have implemented

a different version in which all the subblocks in a pass are processed in parallel regardless of

their size. Thus, although the efficiency might worsen a bit, we are not penalizing the number

of communication rounds.

Fig. 11 also shows the efficiency of two further optimized implementations, labeled with

(5) and (6), respectively. These make use of the approaches put forward in [15, 19, 29, 30].

The curve labeled with (5) and colored in magenta is the result of replacing the random

shuffling between passes in the implementation labeled with (4) by an improved one. Note

that the efficiency depicted in the figure is again the result of a slightly different interpretation

of an improved shuffling in comparison to the original proposals. Thus, instead of using a

hThe number of communication rounds and frame error rate coincide for these two optimizations, labeled with
(3) and (4).



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 471

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3

R
ec

o
n
ci

li
at

io
n
 e

ff
ic

ie
n
cy

 f
E
C

Cascade orig.

Cascade opt. (3)

Cascade opt. (4)

Cascade opt. (5)

Cascade opt. (6)

Fig. 11. Average reconciliation efficiency, fEC , of the original Cascade (black) and for optimized

versions: (3) the version using 16 passes, proposed above and presented in the previous figures

(green), (4) same as (3) but leveraging in addition the idea of block reuse as suggested by [19]
(brown), (5) same as (4) but replacing the random shuffling between passes (magenta), and (6)

same as (3) but discarding singleton blocks after each pass (sky blue). More details are given in
the text.

deterministic shuffling, as proposed in [15], we continue using a random one to avoid that

two bits of a subblock might coincide in the same block of a subsequent pass. As shown, the

modified shuffling marginally improves the efficiency of the implementation labeled with (4).

The other curve labeled with (6) is obtained by discarding the singleton blocks in successive

passes as proposed in [14]. As shown, although the efficiency improves in the high QBER

region, for low error rates it worsens. However, for a fair comparison, the second block size

has to be adjusted for this optimization, given that the per block error probability after the

first pass changes.

4.5 Near optimal Cascade parameters

Up to now, efficiency and frame error rate have been considered separately. We have also

seen that this can be dangerous, since it does not make sense to have a very high efficiency

when actually many frames are discarded because of a high frame error rate. Hence, a better

measure of the quality of the protocol would be a modified efficiency that takes into account

the frame error rate. Further, we will justify the number of passes carried out in Cascade

based on this efficiency.

We define then the ratio of information leakage of an error reconciliation protocol as

follows:

leakEC = (1− εEC)(1−R) + εEC (7)

where εEC is the frame error rate in the reconciliation procedure, and R is the ratio of



472 Demystifying the information reconciliation protocol cascade

information transmitted, as defined in Eq. (2). The factors 1− εEC and 1−R correspond to

the probability of successful reconciliation of two frames and the ratio of information disclosed

for reconciling errors in the frames, respectively. Note that in this definition of leakage we

implicitly assume that the entire frame is disclosed when the reconciliation procedure fails,

or equivalently that in case of error frames are discarded. In this way reconciliation is always

guaranteed in a simulation context. Thus, although this definition penalizes the efficiency, it

has the advantage of not having to consider frame error rate explicitly.

2 4 6 8 10 12 14 16 18 20

Number of passes

0

0.1

0.2

0.3

0.4

0.5

L
ea

k
ag

e

2 4 6 8 10 12 14 16 18 20

Number of passes

0

0.1

0.2

0.3

0.4

0.5

L
ea

k
ag

e

Cascade mod. (4)

Q=1%

Q=2%

Q=5%
ε

E
C

 ≈
 1

0
2

ε
E

C
 ≈

 1
0

3

ε
E

C
 ≈

 1
0

4

ε
E

C
 ≈

 1
0

5

Fig. 12. Information leakage as a function of the number of passes in the proposed modification

of Cascade utilizing subblock reuse, labeled with (4) in Fig. 11.

Fig. 12 shows the information leakage, as described in Eq. (7), as a function of the number

of passes for the modified version of Cascade proposed here, utilizing subblock reuse, i.e.,

the one labeled with (4) above. Three different QBER values, Q = 1%, 2% and 5%, are

considered. Approximate values for the frame error rate after completing several passes are

also marked in the figure, from left to right, εEC ≈ 1.6×10−2 after completing 7 passes, 10−3

after 11 passes, 1.2× 10−4 after 14 passes and 1.6× 10−5 after 17. Although 16 passes have

been carried out to fairly compare the proposed modification of Cascade with the original

one, it is clear from this figure that between 10 and 12 passes are enough to achieve the near

optimal leakage of the protocol. Note that the frame error rate after these passes strikingly

corresponds to the one of the optimized protocol proposed in [10,19]. However, for the three

QBER values simulated, the optimum is obtained in all the cases for 14 passes.

Henceforth, we use this leakage definition to provide a description of the efficiency that

takes into account the frame error rate as follows. As in Section 2 we use ε for the QBER

and h(ε) for the binary Shannon entropy. The reconciliation efficiency is given by:

ηEC =
leakEC
h(ε)

. (8)



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 473

We use Eq. (8) to optimize the first and second block sizes for the range of QBER consid-

ered here. In order to find the optimal block sizes that minimize the reconciliation efficiency

we use a Compass search algorithm (a simple case of a generating set search method) [31].

This is a two dimensional direct search algorithm that allows minimizing a function without

calculating derivatives, hence very robust and reliable. This works as follows. Firstly, it

chooses initial values for the variables to optimize and a delta value for the step size, e.g.,

our choices have been k1 = 1/Q, k2 = 2k1 and δ = k1. Then, it minimizes the function

to get the efficiency ηmin for the two initial block sizes, k1 and k2. In each iteration the

Compass search algorithm computes the function to minimize for four possible directions:

North, South, East, West; i.e., it computes the efficiency for the following four alternatives:

(k1 + δ, k2), (k1 − δ, k2), (k1, k2 + δ) and (k1, k2 − δ). If the best of the computed efficiencies

improves ηmin, the algorithm updates the block sizes and the minimum efficiency with the

best values. If none of these efficiencies improve the current one, the delta value is decreased

by 20%, i.e., δ = 4δ/5, and a new iteration begins.

Table 2. Optimized values for the first and second block sizes using a Compass search algorithm.

n Q 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11%
104 k1 125 64 32 32 32 16 16 16 16 16 16

k2 400 250 172 128 64 67 64 63 64 63 65
214 k1 128 64 32 32 32 16 16 16 16 16 16

k2 520 256 128 128 128 64 64 64 64 64 64

Table 2 shows the optimized values for the first and second block sizes obtained using

the Compass search algorithm described above. Results are given for different QBER values.

These results have been initially computed for frames of length 104 bits, using simulations

comprising 104 frames for each point, a high enough number to get a reasonably accurate

idea of the optimal block sizes. For this optimization the improved version of Cascade that

includes only an implementation of the subblock reuse, labeled with (4), has been employed

using the same number of passes (i.e., 14 passes). As shown in the table, the optimal efficiency

is obtained most of the time for k1 and k2 values that are powers of two or nearby values.

Note that as the block sizes move away from numbers that are a power of two, the dichotomic

search tends to produce increasingly subblocks of size 3, that work inefficiently. Consequently,

results were later computed with a higher accuracy (105 frames per point) to look for the

block sizes that optimize the efficiency of a power of two frame length n = 214. The results

for this frame length are also presented in Table 2. They show, even more convincingly,

the importance of using power of two block sizes. In fact, the use of power of two block

sizes is even more important than any other protocol optimizations to improve the average

reconciliation efficiency of Cascade.

A search for the optimal block sizes, also considering the third block size k3, is then carried

out. To reduce the complexity of the search, and since we already know that blocks that are

not a power of two are not going to be optimal, the search only considers power of two

subblocks, thus reducing significantly the amount of heavy calculations needed. The frame

length also corresponds to a power of two as in Table 2, n = 214 = 16384. Table 3 shows

the optimal block sizes achieved for different QBER values. For an easier comparison with

previous results, in the table the average reconciliation efficiency, as described in Eqs. (2), (3)



474 Demystifying the information reconciliation protocol cascade

Table 3. Optimized values for the first, second and third block sizes using a Compass search

algorithm, average reconciliation efficiencies, and channel uses. Note how the frame error rate is
kept almost constant and close to 10−4.

Chan.
Q k1 k2 k3 ηEC fEC εEC β uses

0.5% 256 1024 4096 1.05182 1.04989 9.2× 10−5 0.9976 168.6
1% 128 512 4096 1.0431 1.04219 8.0× 10−5 0.9963 208.8
2% 64 512 4096 1.04062 1.04006 9.3× 10−5 0.9934 407.6
3% 32 512 4096 1.03945 1.03902 1.1× 10−4 0.9906 496.9
4% 32 256 4096 1.04342 1.04313 9.4× 10−5 0.9862 500.2
5% 16 256 4096 1.04335 1.04313 8.9× 10−5 0.9827 432.6
6% 16 256 4096 1.04601 1.0458 1.1× 10−4 0.9777 606.6
7% 16 256 4096 1.05065 1.0505 8.7× 10−5 0.9709 796.9
8% 8 256 4096 1.05479 1.05465 9.7× 10−5 0.9632 550.3
9% 8 256 4096 1.05499 1.05486 1.0× 10−4 0.9575 690.4
10% 8 256 4096 1.05747 1.05736 1.0× 10−4 0.9493 840.3
11% 8 256 4096 1.06139 1.0613 1.0× 10−4 0.9387 998.4

and (8), and the number of channel uses are also included. Note that a significant price to

pay for the improvement of the efficiency is in the number of communication rounds.

As a result of this analysis we propose to use the following near optimal parameters in

Cascade: k1 = 2dαe, k2 = 2d(α+12)/2e, k3 = 4096, and ki = dn/2e, where α = log2 1/Q − 1
2

and a frame length of n = 214; and to optimize the protocol implementation by considering

the suggested subblock reuse.

Fig. 13 shows the average reconciliation efficiency for the two optimized implementations

labeled with (3) and (4) in Fig. 11. Efficiency is now calculated using Eq. (8) to take into

account the frame error rate. As shown, the efficiency does not decrease to one in the low

QBER region, but it increases due to the contribution of the frame error rate. Curves are

then fairly comparable among different optimizations, in particular, for the low error rate

region. Now, as expected, the efficiency goes to infinity for all the curves when the error rate

tends to zero: even disclosing only one parity, if the error is close to zero brings about very

high increase in efficiency. In the figure two additional optimized versions of Cascade labeled

with (7) and (8) are also included. The curve labeled with (7) is the result of optimizing

the first and second block sizes with the suggested power of two values of Table 2, i.e.,

k1 = 2dlog2 1/Qe, k2 = 4k1, ki = dn/2e for i > 2 and n = 104, with 14 passes. The curve

labeled with (8) is the result of optimizing the first, second and third block sites as suggested

in Table 3 and using a frame length of n = 214. As far as we know these are the best efficiency

values obtained with Cascade or any of its modifications. Furthermore, these values are not

unrealistic, since they take into account the frame error rate. Note that this implies a rather

high number of communications. This is an issue that is likely to be of importance for high

speed QKD systems working at low QBER regimes, where the classical post-processing can

be the bottleneck for the final secret key throughput. However, for long distance, high losses,

QKD transmissions, where every extra secret bit counts, this is likely to be a minor issue.

Obviously, the user can also choose to implement some other of the proposed modifications

to get good efficiency and low frame error rate but with a reduced communication cost. For

example, optimizations (3) and (4) strike a good balance between efficiency, frame error rate

and communication cost. Optimization (4) is slightly more efficient than (3) for the same

frame error rate and communication cost, but the implementation complexity and required



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 475

0 0.02 0.04 0.06 0.08 0.1

Quantum bit error rate Q

1

1.05

1.1

1.15

1.2

1.25

1.3

R
ec

o
n
ci

li
at

io
n
 e

ff
ic

ie
n
cy

 η
E
C

Cascade orig.

Cascade opt. (3)

Cascade opt. (4)

Cascade opt. (7)

Cascade opt. (8)

Fig. 13. Average reconciliation efficiency, ηEC , of the original Cascade (black) and for optimized

versions: (3) the first version proposed above and presented in the previous figures using 16 passes

(green), (4) same as (3) but leveraging in addition the idea of block reuse (brown), (7) same as
(4) but optimizing the first and second block sizes and using 14 passes (orange), and (8) same as

(7) but also optimizing the third block size and using a power of two value for the frame length
n = 214 (dark gray). More details are given in the text.

hardware resources are higher.

5 Conclusions

We provide a comprehensive comparison of the Cascade information reconciliation protocol

and some of its modified versions that have been proposed in literature. Results of exhaus-

tive simulation studies have been used to compare the efficiency, communication rounds and

robustness (failure probability or frame error rate) for all discussed versions. It is shown that

simple claims like efficiency improvement alone do not justify the adoption of a particular

modification. A more global view is needed and, in particular, the frame error rate has to be

taken into account. Based on the analysis of our results, we also propose an optimized version

of Cascade that utilizes previous ideas, and leads to a near optimal implementation of the

protocol. Our optimization is based on reconciling frames with lengths of 104 bits, and al-

though it is also partly valid for larger frames, to achieve optimal performance the block sizes

should be newly optimized. Preliminary calculations indicate that larger frame lengths will

further improve the average reconciliation efficiency, albeit marginally. It is shown that this

optimization, when used with frames that are a power of two, achieves a record reconciliation

efficiency while keeping the frame error rate low.

Acknowledgments

The first author wishes to thank Thomas B. Pedersen for helpful discussions about the

Cascade implementation and some results. The authors also gratefully acknowledge the



476 Demystifying the information reconciliation protocol cascade

computer resources, technical expertise and assistance provided by the Centro de Supercom-

putación y Visualización de Madrid i(CeSViMa).

This work has been partially supported by the project Hybrid Quantum Networks, TEC2012-

35673, funded by Ministerio de Economı́a y Competitividad, Spain and by the Vienna Science

and Technology Fund (WWTF) through project ICT10-067 (HiPANQ).

References

1. S. J. Wiesner (1983), Conjugate Coding, SIGACT News, Vol. 15, No. 1, pp. 78-88.
2. C. H. Bennett and G. Brassard (1984), Quantum Cryptography: Public Key Distribution and Coin

Tossing, in IEEE Intl. Conf. on Computers, Systems, and Signal Processing, pp. 175-179.
3. C. H. Bennett, G. Brassard and J.-M. Roberts (1988), Privacy Amplification by Public Discussion,

SIAM J. Comput., Vol. 17, No. 2, pp. 210-229.
4. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin (1992), Experimental Quantum

Cryptography, J. Cryptology, Vol. 5, No. 1, pp. 3-28.
5. C. H. Bennett, G. Brassard, C. Crépeau and U. M. Maurer (1995), Generalized Privacy Amplifi-

cation, IEEE Trans. Inf. Theory, Vol. 41, No. 6, pp. 1915-1923.
6. G. Brassard and L. Salvail (1994), Secret-Key Reconciliation by Public Discussion, in Advances

in Cryptology – EUROCRYPT ’93, Workshop on the Theory and Application of Cryptographic
Techniques, Vol. 765 of Lecture Notes in Computer Science, pp. 410-423. Springer Berlin Heidel-
berg.

7. M. Van Dijk (1997), Secret Key Sharing and Secret Key Generation, PhD thesis, Technische
Universiteit Eindhoven.

8. M. Van Dijk and A. Koppelaar (1997), High Rate Reconciliation, in ISIT 1997, IEEE Intl. Sym-
posium on Information Theory, p. 92.

9. K. Yamazaki, M. Osaki and O. Hirota (1998), On Reconciliation of Discrepant Sequences Shared
Through Quantum Mechanical Channels, in Information Security, Vol. 1396 of Lecture Notes in
Computer Science, pp. 345-356. Springer Berlin Heidelberg.

10. T. Sugimoto and K. Yamazaki (2000), A Study on Secret Key Reconciliation Protocol “Cascade”,
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., Vol. E83-A, No. 10, pp. 1987-1991.

11. K. Chen (2000), Improvement of Reconciliation for Quantum Key Distribution, Master’s the-
sis, Department of Computer Science, Rochester Institute of Technology, available online at
https://ritdml.rit.edu/handle/1850/14810; last accessed July 7, 2014.

12. E. Furukawa and K. Yamazaki (2001), Application of existing perfect code to secret key recon-
ciliation, in ISCIT 2001, Intl. Symposium on Communications and Information Technologies, pp
397-400.

13. A. Yamamura and H. Ishizuka (2001), Error Detection and Authentication in Quantum Key Dis-
tribution, in ACISP 2001, Information Security and Privacy, 6th Australasian Conf., Vol. 2119 of
Lecture Notes in Computer Science, pp. 260-273. Springer Berlin Heidelberg.

14. K. Chen (2001), Reconciliation by Public Discussion: Throughput and Residue Error Rate, unpub-
lished draft.

15. K.-C. Nguyen (2002), Extension des protocoles de réconciliation en cryptographie quantique, Mas-
ter’s thesis, Faculté des Sciences Appliquées, Université Libre de Bruxelles.

16. S. Liu (2002), Information-Theoretic Secret Key Agreement, PhD thesis, Technische Universiteit
Eindhoven.

17. S. Liu, H. C. Van Tilborg and M. Van Dijk (2003), A Practical Protocol for Advantage Distillation
and Information Reconciliation, Designs Codes Cryptogr., Vol. 30, No. 1, pp. 39-62.

18. W. T. Buttler, S. K. Lamoreaux, J. R. Torgerson, G. H. Nickel, C. H. Donahue and C. G. Peterson
(2003), Fast, efficient error reconciliation for quantum cryptography, Phys. Rev. A, Vol. 67, No.
5, p. 052303.

i http://www.cesvima.upm.es



J. Martinez-Mateo, C. Pacher, Momtchil Peev, A. Ciurana, and V. Martin 477

19. H. Yan, T. Ren, X. Peng, X. Lin, W. Jiang, T. Liu and H. Guo (2008), Information Reconcili-
ation Protocol in Quantum Key Distribution System, in ICNC 2008, 4th Intl. Conf. on Natural
Computation, Vol. 3, pp. 637-641.

20. J. Han and X. Qian (2009), Auto-adaptive interval selection for quantum key distribution, Quantum
Inform. Comput., Vol. 9, No. 7&8, pp. 693-700.

21. R. Ii-Yung (2013), A probabilistic analysis of Binary and Cascade, unpublished manuscript, avail-
able online at http://math.uchicago.edu/˜may/REU2013/REUPapers/Ng.pdf; last accessed July
7, 2014.

22. R. W. Hamming (1950), Error Detecting and Error Correcting Codes, Bell Labs Tech. J., Vol. 29,
No. 2, pp. 147-160.

23. N. Bonello, S. Chen and L. Hanzo (2011), Design of Low-Density Parity-Check Codes: An overview,
IEEE Veh. Technol. Mag., Vol. 6, No. 4, pp. 16-23.

24. S. Seet, R. Ii-Yung and K. Khoo (2013), An Accurate Analysis of the BINARY Information Rec-
onciliation Protocol by Generating Functions, QCrypt 2013, 3rd Intl. Conf. on Quantum Cryptog-
raphy.

25. T. B. Pedersen and M. Toyran (2014), High Performance Information Reconciliation for QKD
with CASCADE, Quantum Inform. Comput., to appear, arXiv:1307.7829 [quant-ph].

26. D. S. Slepian and J. K. Wolf (1973), Noiseless Coding of Correlated Information Sources, IEEE
Trans. Inf. Theory, 19 (4), pp. 471-480.

27. C. Crépeau (1995), Réconciliation et Distillation Publiques de Secret, unpublished manuscript,
available online at http://www.cs.mcgill.ca/˜crepeau/; last accessed July 7, 2014.

28. This is a crucial issue for the application of Cascade in QKD. Information leakage, e.g., see
Eq. (7), is a quantity to be subtracted from the raw key in the privacy amplification step of the
post-processing protocol. Information leakage in turn depends on the ratio of the transmitted
information and hence on the information efficiency fEC (cf. Eq. (2); the theoretically optimal
value of the latter being equal to 1). The main question then is how to estimate the information
leakage of Cascade. Our approach here is that if a parity of a subblock of one of the parties
(Alice) is sent to the other (Bob) and he responds with the parity of the same subblock, then
the overall leakage is 1 bit. This is by no means self-evident as in fact two bits are leaked and in
principle the eavesdropper could make use of both of them. If so, the leakage would double and the
usage of Cascade and any two-way protocol in general would be highly penalized during privacy
amplification. Fortunately this is not the case, at least for BB84. In [32] it is shown that the
information leakage in the discussed case is indeed 1 bit for arbitrary eavesdropper attacks. The
author puts forward the approach of encrypting the reconciliation communication exchange by
one time pad, a procedure that consumes key and is thus, from an overall key generation balance
point of view, equivalent to reducing an equal amount of key during privacy amplification. One of
the results in [32] is that for BB84 one can encrypt BOTH parities discussed above by the same
bit. This implies that in this case the information leakage due to Bob’s answer does not need to
be taken into account during privacy amplification and it is the leakage of information, due to
Alice’s communication alone that is relevant for Cascade performance for BB84.

29. G. Van Assche (2005), Information-Theoretic Aspects of Quantum Key Distribution, PhD thesis,
Faculté des Sciences Appliquées, Université Libre de Bruxelles.

30. G. Van Assche (2006), Quantum Cryptography and Secret-Key Distillation, Cambridge University
Press.

31. A. R. Conn, K. Scheinberg and L. N. Vicente (2009), Introduction to Derivative-Free Optimization,
Society for Industrial and Applied Mathematics, Philadelphia.

32. H.-K. Lo (2003), Method for decoupling error correction from privacy amplification, New J. Phys.,
Vol. 5, pp. 36.1-36.24.


