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Abstract
Continuous variable quantum key distribution bears the promise of simple quantum
key distribution directly compatible with commercial off the shelf equipment.
However, for a long time its performance was hindered by the absence of good
classical postprocessing capable of distilling secret-keys in the noisy regime.
Advanced coding solutions in the past years have partially addressed this problem
enabling record transmission distances of up to 165 km, and 206 km over ultra-low
loss fiber. In this paper, we show that a very simple coding solution with a single code
is sufficient to extract keys at all noise levels. This solution has performance
competitive with prior results for all levels of noise, and we show that non-zero keys
can be distilled up to a record distance of 192 km assuming the standard loss of a
single-mode optical fiber, and 240 km over ultra-low loss fibers. Low-rate codes are
constructed using multiplicatively repeated non-binary low-density parity-check
codes over a finite field of characteristic two. This construction only makes use of a
(2, k)-regular non-binary low-density parity-check code as mother code, such that
code design is in fact not required, thus trivializing the code construction procedure.
The construction is also inherently rate-adaptive thereby allowing to easily create
codes of any rate. Rate-adaptive codes are of special interest for the efficient
reconciliation of errors over time or arbitrary varying channels, as is the case with
quantum key distribution. In short, these codes are highly efficient when reconciling
errors over a very noisy communication channel, and perform well even for short
block-length codes. Finally, the proposed solution is known to be easily amenable to
hardware implementations, thus addressing also the requirements for practical
reconciliation in continuous variable quantum key distribution.

Keywords: Continuous variable quantum key distribution; Quantum Key
Distribution; Information reconciliation; Low-rate coding; Non-binary low-density
parity-check codes

1 Introduction
Quantum key distribution (QKD) [1] allows two distant parties, typically named Al-
ice and Bob, communicating through a quantum channel to exchange an information-
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theoretically secure key. As usual in quantum communications, quantum states carry-
ing information are encoded into photons and transmitted via fiber optics between the
parties. However, due to imperfections when preparing and measuring the transmitted
quantum states, and also due to noise in the quantum channel, there may be disparities
(errors) in the exchanged raw keys—that must be assumed to be caused by any hypothet-
ical eavesdropper. In consequence, once the raw key exchange or key generation process
is concluded, a key distillation process has to be performed to convert their correlated but
noisy raw keys into a shared, error free, secret key. Then, some information from the raw
keys needs first to be disclosed during an information reconciliation (error correction)
procedure [2], carried out over a public noiseless and authenticated channel, to produce
a common string, that is, an identical key on both sides. Subsequently, some information
needs to be removed in a privacy amplification procedure [3] to produce a shorter, but
secret, key. Therefore, to maximize the secret key rate and to achieve greater distances
between the parties, highly efficient information reconciliation methods are necessary in
every experimental realization of QKD.

Discrete-variable (DV) QKD makes use of discrete modulation of quantum states, and
generates correlated discrete variables at Alice’s and Bob’s sides. In a typical DV-QKD
protocol, such as the well-known BB84 proposed by Bennett and Brassard in 1984 [4],
each quantum state encodes a single bit, so that the exchanged raw keys are correlated
bit strings. In such a context, standard binary linear codes, that have been demonstrated
to be highly efficient, can be used for reconciling errors in the exchanged keys. Several
examples of efficient information reconciliation methods have been proposed using, for
instance, low-density parity-check codes [5–8] and polar codes [9]. Other reconciliation
methods, such as Cascade and its modified versions [10, 11], have also been demonstrated
to be highly efficient despite not using conventional decoding techniques.

In continuous-variable (CV) QKD the situation is significantly different. CV-QKD
makes use of continuous modulation of quantum states, and generates correlated Gaus-
sian variables at Alice’s and Bob’s sides. Contrary to what happens in DV-QKD, these de-
vices typically operate in the regime of low signal-to-noise ratio (SNR), that is, the in-
formation is transmitted over a very noisy communication channel. Moreover, the rec-
onciliation efficiency of correlated Gaussian variables is decisive when determining the
achievable secret key rate, thus limiting the maximum attainable distance between the par-
ties. Unfortunately, correcting errors with low-rate codes is relatively complicated, since
the efficiency of common decoding techniques drops in the low SNR regime and also the
decoding complexity is significantly increased. For CV-QKD with Gaussian modulation
several approaches have been explored to improve the reconciliation efficiency of corre-
lated Gaussian variables. Originally, a slice reconciliation scheme was proposed in [12].
This scheme divides a continuous function into slices that are reconciled independently
using codes of different rates, being thus compatible with existing standard binary low-
density parity-check and polar codes. Later, another approach called multidimensional
reconciliation was proposed in [13], with the idea of reducing the problem of reconciling
correlated Gaussian variables to the well-known channel coding problem over the additive
white Gaussian noise (AWGN) channel. In this approach, the physical Gaussian channel
is transformed into a channel close to the binary-input AWGN channel. Numerous al-
ternatives have been proposed for information reconciliation in CV-QKD, most of them
based on low-density parity-check codes (considering both schemes, slice and multidi-
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mensional reconciliation). Multi-edge type low-density parity-check codes are probably
the most widely used method for reconciling errors in the low SNR regime [14–19], some-
times also considering rate-adaptive techniques for highly efficient decoding [20–22], or
quasi-cyclic codes for layered and fast decoding [23]. Additionally, it can also be found pro-
posals that use other codes, such as repeat-accumulate codes [24], raptor codes [25, 26],
or polar codes [9, 27] among others.

Traditional DV-QKD and CV-QKD protocols were severely limited in distance because
the transmittance of the quantum channel decreases exponentially with distance. How-
ever, recent advances, both theoretical and experimental, have made it possible to extend
this distance to a few hundred kilometers. A recent discrete-variable proposal called twin-
field QKD (TF-QKD) allows one to extend this distance by changing the fundamental scal-
ing of the rate [28] with state-of-the-art demonstrations reaching up to approximately one
thousand kilometers [29–31].

In this contribution, we discuss a family of low-rate codes that efficiently correct errors
on the binary-input AWGN channel, even at low and ultra low SNR regime. These codes
are constructed from (2, k)-regular non-binary low-density parity-check codes, and their
construction is quite simple since no code design is required. These low-rate codes are
of particular interest for CV-QKD given that their decoding is highly efficient and their
construction is also inherently rate-adaptive, that is, they remain efficient even when the
channel varies or the channel noise is different. Furthermore, the proposed codes and their
decoding are suitable for hardware implementations as demonstrated in [32].

The remainder of this paper is organized as follows. In Sect. 2 we review the background
of binary and non-binary low-density parity-check codes and their interest for correcting
or reconciling errors in QKD. Then, we describe the proposed low-rate code construction
and the corresponding efficient decoding algorithm. We validate the construction with
comprehensive numerical simulations in Sect. 3. Finally, we present our conclusions in
Sect. 4.

2 Background
2.1 Information reconciliation with non-binary low-density parity-check codes
Low-density parity-check (LDPC) codes were introduced by Gallager in the early 1960s
[33], but remained largely unexplored until the late 90s, when MacKay and Neal revisited
these codes and explored their potential [34, 35]. It soon turned out that their performance
over binary input memoryless channels was very close to channel capacity [36], that is,
they have good thresholds. Furthermore, the sparsity of LDPC matrices allows high per-
formance and low complexity decoding using iterative message-passing algorithms based
on belief propagation (such as the sum-product algorithm). Other decoding algorithms
and techniques (for instance, normalized and offset min-sum algorithms, or serial and par-
allel schedule) also exhibit a good trade-off between performance and complexity, making
them suitable for hardware implementations. Consequently, LDPC codes were regarded
as one of the most promising coding techniques.

Non-binary LDPC codes were also considered by Gallager in his seminal work [33].
Davey and MacKay later found that these codes can outperform binary LDPC codes [37].
However, this improvement was achieved at the expense of increased decoding complex-
ity. Several low-complexity algorithms were then proposed [32, 38, 39] for decoding non-
binary LDPC codes over finite (Galois) fields of order q, in the following denoted by GF(q),
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where q is a power of prime q = pm, q > 2 with p prime and positive integer m ≥ 1. There-
after, these codes have attracted much attention thanks to their good performance.

As linear codes, binary and non-binary LDPC codes can be represented by a Tanner or
bipartite graph, that is, a graphical depiction of a parity-check matrix H . Nodes in a Tan-
ner graph are divided between symbol (or variable) nodes and check (or constraint) nodes.
Each check node corresponds to a parity-check constraint (that is, an implicit equation of
a linear code, a row in H), and thus it is connected by edges to those variables (symbols
nodes) involved in the equation. This representation is useful for both decoding and code
construction. On the construction of these codes, it is well known that good binary LDPC
codes are designed allowing symbols to participate in different checks in an irregular fash-
ion [40]. Therefore, each symbol node connects to a number of check nodes, and we refer
to this as symbol node degree. Such codes are referred to as irregular LDPC codes, and
good code ensembles are designed by optimizing symbol and check node degree distri-
butions on Tanner graphs [36, 41]. However, while irregular Tanner graphs help improve
the performance of binary LDPC codes, this is not the case for non-binary LDPC codes,
where (2, k)-regular non-binary LDPC codes over GF(q) are empirically known to be the
best performing codes [42]. This is another significant advantage of non-binary LDPC
codes.

Based on both binary and non-binary LDPC codes efficient methods have been pro-
posed for information reconciliation in DV-QKD, all of them in the high-rate regime (that
is, for code rates greater than one half ). Notable examples are, for instance, highly effi-
cient reconciliation methods using rate-adaptive binary [5] and non-binary LDPC codes
[43, 44], blind (or interactive) reconciliation using also rate-adaptive but short block-
length LDPC codes [6, 45, 46], and high-throughput reconciliation with layered decod-
ing and quasi-cyclic LDPC codes [7]. These methods can also be used for information
reconciliation in CV-QKD with slice reconciliation.

Binary and non-binary LDPC codes have been empirically shown to have good perfor-
mance for high-rate codes. However, when transmitting information over a very noisy
communication channel, that is, for low-rate coding, their performance degrades rapidly
[47]. Multi-edge type LDPC codes were originally proposed by Richardson and Urbanke
to design high-rate codes with low error floors and low-rate codes with high performance
[48]. These codes are an extension of standard binary LDPC codes where in the Tanner
graph only one type of edges is considered. In multi-edge type LDPC codes, there are dif-
ferent edge types such that a node is no longer characterized by a single degree but by
a vector degree. Unfortunately, a major shortcoming of low-rate multi-edge type LDPC
codes is the large number of check node computations which significantly increases their
decoding complexity.

Efficient reconciliation methods based on multi-edge type LDPC codes have been pro-
posed for information reconciliation in CV-QKD [14–17, 19–21, 23, 49]. However, most of
these proposals consider very large block-length codes of approximately 106 bits, or even
larger, which make hardware implementations unrealistic. Therefore, these approaches
neither allow for efficient decoding using short or intermediate block-length codes, nor
can be efficiently implemented. Their decoding complexity can only be reduced by limit-
ing the maximum check node degree that may lead to suboptimal codes [50].

However, we consider that the potential of non-binary LDPC codes has not been ex-
plored enough in the context of CV-QKD, that is, for reconciling continuous correlated
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Figure 1 Example of C2. A (2, 3)-regular linear (mother) code is
concatenated with an inner multiplicative repetition code of length 2,
resulting in a code of rate 1/6

variables.1 The purpose of this work is to study the possibility of adapting non-binary
LDPC codes to efficiently operate in the low SNR regime. To this end, we carried out a
comprehensive analysis of the multiplicatively repeated non-binary LDPC codes proposed
in [52], and in this paper we show their interest for low-rate coding and their application
in CV-QKD postprocessing. In the following, we first describe these codes in Sect. 2.2,
and then a modified decoding algorithm for reconciling errors is given in Sect. 2.3.

2.2 Multiplicatively repeated non-binary LDPC codes
Kasai and Declerq proposed in [52] the concatenation of non-binary LDPC codes with
multiplicative repetition inner codes. According to their proposal, a (2, k)-regular non-
binary LDPC code over a finite field of order 2p is multiplicatively repeated to construct
non-binary LDPC codes of lower rates. Surprisingly, as we show below, such simple low-
rate non-binary LDPC code construction using high order fields outperforms other low-
rate codes so far, particularly when considering short and intermediate block-length codes.

Let C1 be a (2, 3)-regular non-binary LDPC code over GF(2p) of length N symbols, or
equivalently Np bits,2 and rate 1/3. In the following, we refer to this code as mother code.
From this mother code we construct a code C2 in the following way. We choose N coef-
ficients rN+1, . . . , r2N uniformly at random from the finite set GF(2p) \ {0}, then for each
codeword in C1 we define a codeword in C2 as follows:

C2 = {(x1, x2, . . . , x2N ) : (x1, . . . , xN ) ∈ C1,

xN+n = rN+nxn for n = 1, . . . , N} .

We say that the symbol xN+n (with xN+n = rN+nxn) is a multiplicative repetition symbol
of xn, for n = 1, . . . , N . Therefore, we construct C2 by multiplicatively repeating each sym-
bol node of the mother code C1. Note also that, for each multiplicative repetition sym-
bol we have an additional parity-check constraint, that is, it holds xN+n + rN+nxn = 0 for
n = 1, . . . , N . Hence, in other words, we construct the code C2 by connecting each symbol
node xn of C1 to a new check node (the additional parity-check constraint), which is also
connected to a second symbol node xN+n (the multiplicative repetition symbol of xn). Fig-
ure 1 depicts an example of C2. As shown, each symbol node of degree one in the figure
represents a multiplicative repetition symbol xN+n of xn for n = 1, . . . , N , and each check
node of degree two represents a new parity-check constraint.

1Except for the case of the correlated bivariate normal distribution [51].
2For convenience and faster decoding [38], we only consider finite fields of characteristic two, that is, binary finite fields of
order 2p . The elements of the finite field are binary polynomials of degree less than or equal to p – 1, that is, polynomials
whose coefficients are either 0 or 1. Operations in the finite field (that is, addition and multiplication, and their inverse
operations, subtraction and division, respectively) can then be efficiently implemented.
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Figure 2 Example of C3. A (2, 3)-regular linear code
is concatenated with an inner multiplicative
repetition code of length 3. The code rate is 1/9

Clearly, the constructed code C2 has the same number of codewords as the mother
code C1, however the codewords of C2 are twice as long as the codewords of C1, that
is, the code length of C2 is 2N symbols, thus resulting in a lower code rate of 1/6.

Next, from C2 we construct another code C3 in a similar way. We choose again N co-
efficients r2N+1, . . . , r3N uniformly at random from the finite set GF(2p) \ {0}, and then we
construct C3 from C2 by multiplicatively repeating each symbol of C1 as follows:

C3 = {(x1, x2, . . . , x3N ) : (x1, . . . , x2N ) ∈ C2,

x2N+n = r2N+nxn for n = 1, . . . , N} .

C3 has the same number of codewords as C2 and C1, but the codeword length is now of
3N symbols. Thus, the code rate of C3 is 1/9. Figure 2 depicts an example of C3. Again,
symbol nodes of degree one correspond to multiplicative repetition symbols, whereas
check nodes of degree two correspond to parity-check constraints induced by each mul-
tiplicative repetition symbol.

Subsequent lower rate codes are constructed recursively, as we have shown above for C2

and C3. A code CT , with T ≥ 2, is defined recursively as follows. We choose N coefficients
r(T–1)N+1, . . . , rTN uniformly at random from GF(2p) \ {0}, then we construct CT from CT–1

by multiplicatively repeating each symbol of C1 as follows:

CT =
{
(x1, x2, . . . , xTN ) : (x1, . . . , x(T–1)N ) ∈ CT–1,

x(T–1)N+n = r(T–1)N+nxn for n = 1, . . . , N
}

.

The code CT has a length of T · N symbols, and rate 1/(3T). We refer to T as repetition
parameter.

Note that, this code construction is inherently rate-adaptive since in the construction
of the last code CT from CT–1 we can add as many multiplicative repetition symbols as
we wish, obviously between 1 and N . Hence, from a code CT–1 with codewords of length
(T – 1)N symbols we can construct a code CT with codewords of length from (T – 1)N + 1
to TN symbols, resulting in a code of rate 1/3(T – 1) < R ≤ 1/3T .

2.3 Non-binary LDPC decoding algorithm
In this section we describe a belief propagation algorithm for efficiently decoding mul-
tiplicatively repeated non-binary LDPC codes.3 The algorithm is adapted to the source
coding problem with side information studied by Slepian and Wolf [54], that more accu-
rately describes the problem of correcting disparities between correlated sources—also

3It is well-known that a belief propagation algorithm would produce the exact posterior probabilities of all the symbols
after a number of iterations, that is, optimum decoding, but only if the Tanner graph contains no cycles [53].
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known as information reconciliation or simply reconciliation in the context of secret-key
agreement.

Source coding with side information: Let x and y be two correlated strings of length N
(that is, two strings of symbols, or equivalently, two bit strings of length Np) belonging to
Alice and Bob, respectively, that is, these strings are realizations of the correlated sources
X and Y . The encoder computes the syndrome z of his string x, that is, z = Hx (where H
is the parity-check matrix of a given linear code), and sends it to the decoder through a
noiseless channel. Then the decoder, given the coset index z (the syndrome of x), look for
the sequence in the coset Cz that is closest to y, where the coset Cz is a set that includes all
strings of length N with z syndrome, that is, Cz = {x : Hx = z}. For further information see
the Wyner’s binning scheme [55], or the modified decoding algorithm for binary LDPC
codes proposed by Liveris [56].

In the scenario presented above Alice is the encoder and Bob the decoder, then if Alice
is also the emitter of quantum states and Bob the receiver we say that the parties perform
direct reconciliation. Otherwise, that is, when the emitter and encoder are on different
sides, we consider it as reverse reconciliation. To switch from one scheme to another we
just need to exchange the roles (encoder and decoder).

Note that, in the following we will consider the decoding of a multiplicatively repeated
non-binary LDPC code over GF(2p) of length N symbols. Therefore, each sequence of p
bits represents the binary polynomial corresponding to an element of the finite field
GF(2p), that is, a symbol.

Decoding algorithm: Let N (m) be the set of indexes of symbol nodes adjacent to the
check node zm, and let M(n) be the set of indexes of check nodes adjacent to the sym-
bol node xn, that is, N (m) = {n : hmn �= 0} and M(n) = {m : hmn �= 0}, respectively, where
H = (hmn) is the parity-check matrix of a given linear code. An iterative decoding (belief
propagation based) algorithm for non-binary LDPC codes, such as in the binary case, is
a message-passing algorithm where probabilities are propagated along the edges of the
Tanner graph associated with the parity-check matrix H . The algorithm consists mainly
of two alternating steps. On each iteration �, first messages r(�)

mn are exchanged from check
to symbols nodes, and later messages q(�)

mn are exchanged from symbol to check nodes. Fig-
ure 3 depicts how these messages are iteratively updated using extrinsic information, that
is, probabilities obtained in a previous iteration from other neighboring nodes. Both steps
are repeated until all of symbol values are known (that is, all the parity-check constraints
are satisfied), or a maximum number of decoding iterations is reached.

Step 1. Initialization: Let Xn and Yn be the random variables of the n-th transmitted and
received symbols, respectively, and let yn be n-th received symbol, that is, the channel
output of the n-th transmitted symbol. For each symbol node xn in the mother code C1,
with n = 1, . . . , N , we calculate 2p prior probabilities, that is, the a priori probability of
symbol xn being α:

p(0)
n (α) = Pr(Xn = α|Yn = yn), ∀α ∈ GF(2p).
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Figure 3 Iterative decoding messages (probabilities)
propagated along the edges of a Tanner graph.
Messages qmn(α) for all α ∈ GF(2p) are exchanged
from symbol to check nodes, that is, the probability
that symbol xn = α given the information obtained
from other checks (Left). Messages rmn(α) for all
α ∈ GF(2p) are exchanged from check to symbol
nodes, that is, the probability of check zm being
satisfied if symbol xn = α given the information
obtained from other symbols (Right). Note that,
messages or probabilities in iteration � + 1 are calculated from the messages exchanged in the previous
iteration �

In order to calculate the a priori probability of each symbol node xn in the mother code
C1 we have to consider also the a priori probabilities of the multiplicative repetition sym-
bols xtN+n of xn, given the check constraints xtN+n = rtN+nxn, for t = 1, . . . , T – 1.

Then, each symbol node xn initially sends the message q(0)
mn = p(0)

n to its adjacent check
nodes zm, for all m ∈M(n), that is:

q(0)
mn(α) = p(0)

n (α), ∀α ∈ GF(2p).

Note also that, messages reaching symbol nodes of degree one or degree two check
nodes do not participate in messages that are sent back from these nodes (see Fig. 3).
Therefore, in a multiplicatively repeated non-binary LDPC code the decoder does not
need to propagate messages either to those symbol nodes of degree one or to their adja-
cent check nodes of degree two (see the upper part of the Tanner graph in Figs. 1 and 2).
Consequently, in the following steps 2 and 3 (that is, in the message-passing part of the
algorithm), for decoding we only consider the lower part of the graphs, that is, the mother
code C1.

Step 2. Messages from checks to symbols: Each check node zm has incoming messages
q(�)

mn received in the iteration � from its adjacent symbol nodes xn, for all n ∈ N (m). In
the subsequent iteration, we calculate the messages sent back from the check node to its
neighboring nodes, r(�+1)

mn , but only using extrinsic information, that is, the message sent
back from the check node zm to the symbol node xn is calculated using only the incoming
messages from other edges, that is q(�)

mn′ with n′ ∈N (m) \ {n}.
Therefore, we compute4 first:

q̃(�)
mn(α) = q(�)

mn(h–1
mnα), ∀α ∈ GF(2p)

and then

r̃(�+1)
mn (α) =

⊗

n′∈N (m)\{n}
q̃(�)

mn′ (α), ∀α ∈ GF(2p)

4Note that, for convenience instead of computing f (x) = h–1(x) we could use f (h(x)) = x.
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where q1 ⊗ q2 is a convolution of q1 and q2, that is:

(q1 ⊗ q2)(α) =
∑

α1,α2∈GF(2p)
α=α1+α2

q1(α1)q2(α2), ∀α ∈ GF(2p).

This is the most complex part of the decoding. However, the convolution can be effi-
ciently calculated in the frequency domain using the Fourier transform over finite fields.
This transform can be easily computed when the Galois field GF(q) is a binary extension
field with order q = 2p. The decoding of non-binary LDPC codes is then optimized us-
ing for instance the p-dimensional Walsh-Hadamard transform as proposed in [38, 57].
By applying the Walsh-Hadamard transform W{·} the discrete convolution turns into a
multiplication as follows:

W{r̃(�+1)
mn (α)} =

∏

n′∈N (m)\{n}
W{q̃(�)

mn′ (α)}, ∀α ∈ GF(2p).

Moreover, since the Hadamard transform coincides with its inverse, it follows:

r̃(�+1)
mn (α) = W{

∏

n′∈N (m)\{n}
W{q̃(�)

mn′(α)}}, ∀α ∈ GF(2p).

Note that, both the input and output of the Walsh-Hadamard transform are 2p dimen-
sional real-valued vectors. Then, by W{f (α)} we denote the result of applying the Walsh-
Hadamard transform over the 2p values of the function f (α), with α ∈ GF(2p), but con-
sidering only the component of the output vector that corresponds to the input f (α) for a
given α. This can be efficiently implemented via the fast Walsh-Hadamard transform.

Finally, each check node zm sends the message r(�+1)
mn to the symbol node xn for all n ∈

N (m) that is calculated as follows:

r(�+1)
mn (α) = r̃(�+1)

mn (hmnα), ∀α ∈ GF(2p).

Note that, this is the channel coding version of the decoding algorithm, that is, when the
transmitted message is always a codeword with zero syndrome. For the source coding with
side information problem, the decoder look for the closest word with a given syndrome z
(the syndrome of x), and thus the decoding is calculated as follows:

r(�+1)
mn (α) = r̃(�+1)

mn (hmnα – zm), ∀α ∈ GF(2p).

Step 3. Messages from symbols to checks: Each symbol node xn has incoming messages
r(�+1)

mn (computed in step 2) received from its adjacent check nodes zm, for all m ∈ M(n).
Then, messages q(�+1)

mn are sent back from the symbol node xn to its neighboring nodes,
again only using extrinsic information, that is, the message sent back from the symbol
node xn to the check node zm is calculated using only the incoming messages from other
edges, that is r(�+1)

m′n with m′ ∈M(n) \ {m}, as follows:

q(�+1)
mn (α) = βm p(0)

n (α)
∏

m′∈M(n)\{n}
r(�+1)

m′n (α), ∀α ∈ GF(2p)
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where βm is a normalizing factor such that messages q(�+1)
mn (α) are probabilities, that is, βm

is chosen such that:

∑

α∈GF(2p)

q(�+1)
mn (α) = 1.

Step 4. Tentative decision: Finally, for each symbol node in the mother code C1 we cal-
culate an estimation of the a posteriori probability of symbol xn being α, with n = 1, . . . , N ,
as follows:

p(�)
n (α) = p(0)

n

∏

m′∈M(n)

r(�)
m′n(α), ∀α ∈ GF(2p).

We make then a tentative decision for the value of each symbol xn based on the highest
probability:

x̂(�)
n = max

α∈GF(2p)
{p(�)

n (α)}.

Multiplicative repetition symbols xtN+n of xn, for each n = 1, . . . , N , are then calculated
with the newly obtained value x̂(�)

n of symbol xn and using the parity-check constraints
xtN+n = rtN+nxn, for all t = 1, . . . , T – 1.

Once we have an estimate of the values for all symbols, x̂, we may calculate all the parity-
check constraints to verify if they are satisfied (syndrome validation), that is, for the source
coding with side information problem we verify if the received syndrome z equals Hx̂. In
such a case the algorithm concludes with successful decoding. Otherwise, the decoding
algorithm continues iteratively, repeating steps 2 to 4, until the parity-check constraints
are satisfied or a maximum number of iterations is reached without successful decoding.
Note, however, that sometimes (typically in hardware implementations) the decoding al-
gorithm continues iteratively without verifying whether the constraints are satisfied, that
is, without a syndrome validation step. In that case the algorithm concludes after a given
number of decoding iterations.

Compared to the decoding of binary LDPC codes, non-binary LDPC decoding demands
a high computational complexity in the check-node processing (that is, when computing
the messages from checks to symbols in Step 2 of the decoding algorithm) and requires
a large amount of memory to store the messages exchanged in each iteration. However,
there are several proposals in the literature to reduce both computational complexity and
memory requirement.

Recent hardware (HW) implementations of non-binary LDPC codes for CV-QKD [58]
suggest that the constructions discussed here should similarly be amenable to HW. Let us
review in more detail the state-of-the-art to understand where the challenges may lie. In
[32] there are summarized multiple HW implementations (in FPGA and ASIC architec-
tures) of non-binary LDPC decoders. Some of these also consider the sum-product algo-
rithm here described, over finite fields of order 28, and with block-lengths of up to 1024
symbols and rate one half. We instead require codes of rate 1/3, with less computational
complexity. However, to the best of the authors’ knowledge, there are no hardware imple-
mentations of non-binary LDPC codes over finite fields of higher orders. In particular, its
implementation over a finite field of order 210 remains open.
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Table 1 Multi-edge type LDPC ensembles

R νm m μm m

0.01 0.012 2 95 0 0.004 4 0 0
0.009 3 95 0 0.007 5 0 0
0.979 0 0 1 0.942 0 2 1

0.037 0 3 1

0.015 0.028 2 53 0 0.005 3 0 0
0.009 3 53 0 0.017 4 0 0
0.963 0 0 1 0.928 0 2 1

0.035 0 3 1

0.02 0.031 2 45 0 0.019 4 0 0
0.013 3 45 0 0.005 5 0 0
0.956 0 0 1 0.888 0 2 1

0.068 0 3 1

0.03 0.017 2 58 0 0.011 9 0 0
0.025 3 58 0 0.001 10 0 0
0.958 0 0 1 0.438 0 2 1

0.52 0 3 1

0.04 0.027 2 44 0 0.015 9 0 0
0.029 3 44 0 0.001 6 0 0
0.944 0 0 1 0.368 0 2 1

0.576 0 3 1

3 Results
Comprehensive simulations were performed to analyze the performance and efficiency of
multiplicatively repeated non-binary LDPC codes, and such results are initially presented
in Sect. 3.1. Next, we verified that these codes are efficient enough to exchange secret-
keys over long distances using a CV-QKD protocol, and secret-key rates are then given in
Sect. 3.2.

3.1 Performance and reconciliation efficiency
In this section we study the performance and efficiency of multiplicatively repeated non-
binary LDPC codes for correcting errors at very low SNRs, and compare these codes to
other similar proposals in the literature. Simulations were performed over the binary input
additive white Gaussian noise (BIAWGN) channel, as it is commonly used in prior work
[14–16, 19, 22–26, 59]. This is a good model that approximates well, though not exactly,
the correlations between input and output [60]. This channel is also the correct model for
binary modulated CV-QKD [61]. Although we could perform a similar analysis for this
protocol, to avoid being repetitive, we focused on the application to Gaussian modulated
CV-QKD.

First, we have simulated the performance of low-rate multi-edge type LDPC codes pro-
posed in [48]. We designed ensembles of irregular multi-edge type LDPC codes using a
modified version of the differential evolution algorithm described in [62]. The designed
codes (see Table 1) have thresholds similar to others published in the literature. Thresh-
olds were computed using a modified version of the discretized density evolution algo-
rithm described in [41]. Both, differential and density evolution were modified according
to the suggestions given in [48, 63], where the authors describe how the analysis for stan-
dard LDPC codes given in [36, 40] extends to multi-edge type LDPC codes. Then, we
constructed instances of the code ensembles given in Table 1 using a modified progres-
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Figure 4 Performance (that is, frame error rate as a function of signal-to-noise ratio) of low-rate multi-edge
type LDPC codes over the BIAWGN channel, for several code rates R and code lengths N in bits

sive edge-growth algorithm [64]. Code lengths of 104 and 105 bits were chosen.5 Numer-
ical results were finally computed using iterative LDPC decoding. For decoding we used
a sum-product algorithm with serial schedule and a maximum of 50 decoding iterations
(that is, after each iteration we make a tentative decision and syndrome validation, thus
the algorithm stops assuming that decoding was successful if the syndrome is satisfied or
the maximum number of decoding iterations is reached). Figure 4 shows the performance
of these codes over the BIAWGN channel. For the codes of 105 bits length, simulations
were also performed increasing the maximum number of decoding iterations to 200, but
however, as shown, the performance does not improve significantly.

Next, we have simulated the performance of multiplicatively repeated non-binary LDPC
codes. We considered as mother code C1 a (2, 3)-regular non-binary LDPC code over
GF(210) of rate 1/3. From such a code we constructed multiplicatively repeated codes of
lower rates 1/30, 1/45, 1/60, and 1/90, as described in Sect. 2.2. For the mother code two
code lengths of N = 103 and 104 symbols, were considered. Given that each element of
the finite field is represented by a binary polynomial of degree less than or equal to 9
(that is, a polynomial with 10 binary coefficients or 10-bit string), we are using 10 bits
per symbol. Thus, the lengths considered for the mother codes equal the lengths in bits
previously considered for multi-edge type LDPC codes. Note that, the length of a mul-
tiplicatively repeated code actually depends on the repetition parameter T , that is, the
actual number of symbols or codeword length is NT . However, as we already argued in
Sect. 2.3, multiplicative repetition symbols do not contribute to the messages computed
in the message-passing part of the decoding algorithm. Therefore, for the sake of con-
venience, in the following when we refer to the length of multiplicatively repeated non-
binary LDPC codes we consider the length N of the mother code (instead of the actual
but unrealistic code length NT ). Numerical results were computed using iterative LDPC

5Note that, the code lengths here chosen are relatively short compared to the lengths considered in most proposals using
multi-edge type LDPC codes in CV-QKD. For instance, a code length of 220 bits was considered in [14], a length of 106
bits were used in [17, 21, 23], and 1.024× 106 bits length in [19].
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Figure 5 Performance of multiplicatively repeated non-binary LDPC codes over GF(210) and the BIAWGN
channel, for several code rates R and code lengths N in symbols

decoding. For decoding we used the sum-product algorithm described in Sect. 2.3 with a
maximum of 50 decoding iterations (again, making a tentative decision and verifying the
syndrome after each iteration). Figure 5 shows the performance of these multiplicatively
repeated non-binary LDPC codes over the BIAWGN channel. As shown, it is noteworthy
that the performance of shorter codes, of 103 symbol lengths, is almost as good as that of
longer codes. For the codes of 104 symbols length, simulations were also performed in-
creasing the maximum number of decoding iterations to 200. As shown, unlike multi-edge
type LDPC codes, the number of iterations plays a determining role for multiplicatively
repeated non-binary LDPC codes. This behavior is depicted in Fig. 5, where a circle marks
the performance (at a frame error rate of 10–1) of the code of rate R = 1/30 considering
different code lengths and decoding iterations. In summary, to improve the performance
(and consequently the efficiency) of these codes, it is necessary to increase both the code
length (as usual) and the maximum number of decoding iterations.

In the following we study and compare the efficiency of multiplicatively repeated non-
binary LDPC codes with other proposals, but let us first see how we calculate it. Let R be
the rate of the code used for correcting errors, then the reconciliation efficiency in CV-
QKD, denoted by β , is calculated as follows:

β =
R
C

, (1)

where C is the channel capacity, that is, here the capacity of the BIAWGN channel. Hence,
the channel capacity and therefore also the efficiency are functions of SNR. Note that, for
small SNR values s the capacity of the BIAWGN channel is well approximated by that of
the AWGN channel, given by C = 1

2 log2(1 + s).
Table 2 shows the reconciliation efficiencies, β , for the multi-edge type LDPC and mul-

tiplicatively repeated non-binary LDPC codes simulated in Figs. 4 and 5, respectively.
A number of significant cases were chosen for several code rates R, code lengths N , and
maximum number of decoding iterations (iters). In the case of multi-edge type LDPC
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Table 2 Information reconciliation efficiencies

Multi-edge type Multiplicatively repeated

R N iters β R N iters β

0.01 105 50 0.8475 0.0111 103 200 0.8732
0.01 105 200 0.875 0.0111 104 200 0.9079
0.015 105 50 0.8647 0.0166 103 200 0.876
0.015 105 200 0.871 0.0166 104 200 0.9087
0.02 105 50 0.8793 0.0222 103 200 0.8775
0.02 105 200 0.8911 0.0222 104 200 0.9092
0.03 105 50 0.894 0.0333 103 200 0.8781
0.03 105 200 0.898 0.0333 104 200 0.9112

Figure 6 Reconciliation efficiency of multiplicatively repeated non-binary LDPC codes over GF(210).
Efficiency was computed considering a target FER of 10–1

codes were only considered larger code lengths of 105 bits, but results are compared for a
maximum of 50 and 200 decoding iterations. For the multiplicatively repeated non-binary
LDPC codes were considered both code lengths, 103 and 104 symbols, but only a maxi-
mum of 200 decoding iterations. Efficiencies were calculated for a target frame error rate
(FER) of 10–1 as suggested in [7], that is, given a code of rate R we first compute the SNR
for which the code works at a FER of 10–1, then we calculate the channel capacity C and
efficiency β using equation (1) with the obtained SNR. As shown in Table 2, multiplica-
tively repeated non-binary LDPC (even when using short block-length) codes outperform
multi-edge type LDPC codes, but the maximum number of decoding iterations is a deter-
mining parameter, since, while multi-edge type LDPC codes do not substantially improve
the efficiency with larger decoding iterations, this is not the case with multiplicatively re-
peated non-binary LDPC codes. A comprehensive analysis of this behavior was performed
below.

Figure 6 shows the reconciliation efficiency of multiplicatively repeated non-binary
LDPC codes over GF(210) as a function of the repetition parameter T . As shown, the ef-
ficiency gradually decreases at the beginning, that is with 2 ≤ T ≤ 10, but surprisingly
remains almost constant for higher values of the repetition parameter, that is for T ≥ 20.
Therefore, low-rate and very low-rate codes are almost equally efficient. It is notewor-
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thy that extremely low-rate codes, that is, codes of rates R = 1/300, R = 1/600 and up to
R = 1/900, with length 104 symbols, have an efficiency above 90%. Furthermore, for very
low-rate codes, that is R < 0.02, the efficiency of codes of length 103 symbols is even better
than the efficiency of multi-edge type LDPC codes of length 105, as reported in Table 2.
Note also that, to better understand the significance of the number of decoding iterations,
the figure shows simulation results for a maximum of 50 (dashed line) and 200 (solid line)
iterations.

In the figure, we also show the fundamental limits on the efficiency when reconciling
errors using multiplicatively repeated non-binary LDPC codes over GF(210) with a mother
code of lengths N = 103 and N = 104. We used recent results in non-asymptotic classical
information theory [65] for upper bounding the reconciliation efficiency in CV-QKD with
only one-way communications. These results were adapted to calculate the efficiency β as
given in Eq. (1):

β(n, ε,σ ) = 1 –
√

v(σ )/n
1 – h(σ )

Φ–1(1 – ε), (2)

where n is the length of the code (in bits), ε is the frame error rate, and σ is the signal-
to-noise ratio. On the other hand, Φ(·) is the cumulative standard normal distribution,
h(σ ) = 1 – C is the conditional entropy, and v(σ ) = e(σ ) – h(σ )2 is the conditional entropy
variance, where:

fXY (x, y) =
√

σ

8π
eσ (y–x)2/2, fY (y) = fXY (1, y) + fXY (–1, y),

C = –
∫ ∞

–∞
fY (y) log2 fY (y)dy +

1
2

log2

( σ

2πe

)
≈ 1

2
log2(1 + σ ),

and

e(σ ) = 2
∫ ∞

–∞
fXY (1, y)

(
log2

fXY (1, y)

fY (y)

)2

dy.

Note that each point in the figure corresponds to the efficiency of a multiplicatively re-
peated non-binary LDPC code for a given repetition parameter T , where each symbol
of the mother code is then multiplicatively repeated T times, thus expanding the code-
word length to NT symbols. Given that we are using 10 bits per symbol, the length of
the equivalent binary code is n = 10NT bits. Furthermore, for each T value we consider
the signal-to-noise ratio σ at which the efficiency shown was achieved. Finally, taking into
account that efficiencies were calculated for a target frame error rate of ε = 10–1, we may
obtain an upper bound for the reconciliation efficiency given by β(n, ε,σ ).

For a constant block-length code, this upper bound on the reconciliation efficiency is
a monotonically decreasing function for decreasing signal-to-noise ratios. However, both
the fundamental limits and reconciliation efficiencies shown remain constant. This behav-
ior occurs because, as the repetition parameter increases, more symbol nodes are multi-
plicatively repeated, thereby increasing the effective length n (in bits) of the reconciled
string.

Figure 7 shows again the performance of multiplicatively repeated non-binary LDPC
codes but now for ultra-low rates, up to R = 0.00111 (that is, with repetition parameter
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Figure 7 Performance of multiplicatively repeated non-binary LDPC codes over GF(210) and the BIAWGN
channel, for several ultra-low code rates R and code lengths N in symbols

Figure 8 Reconciliation efficiency of multiplicatively repeated non-binary LDPC codes over GF(2p) with
repetition parameter T = 15. Efficiency was computed considering a target FER of 10–1

T = 300). The mother codes C1 used are the same as for Fig. 5, that is, a (2, 3)-regular non-
binary LDPC code over GF(210) of rate 1/3 and lengths of 103 and 104 symbols. How-
ever, in this case simulations were performed only considering 200 decoding iterations
maximum. The figure shows the performance of those codes with lowest code rates that
perform well over the BIAWGN channel (as confirmed in Fig. 6).

Finally, we analyze the relationship between the efficiency and the order of the Ga-
lois field used in the construction and decoding of multiplicatively repeated non-binary
LDPC codes. Figure 8 reports the reconciliation efficiency of multiplicatively repeated
non-binary LDPC codes over different Galois fields GF(q) being a binary extension field
with order q = 2p. For all the codes the repetition parameter is T = 15, hence the code
rate is R = 1/45. However, different code length N were chosen such that the mother code
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lengths in bits are Np = 1.2 × 104 and Np = 1.2 × 105. As shown, as the order of the Galois
fields increases, the efficiency also improves. Therefore, high orders are also a necessary
condition to achieve good performance and reconciliation efficiency using the proposed
codes. Again, as in the previous figure, results are shown for a maximum of 50 (dashed
line) and 200 (solid line) decoding iterations.

3.2 Secret-key rate
The asymptotic secret-key rate for collective attacks of a CV-QKD protocol using reverse
reconciliation is given by K = βIAB –χBE, where IAB is the mutual information between Al-
ice and Bob (emitter/decoder and receiver/encoder, respectively), χBE is the Holevo bound
on the information leaked to the eavesdropper Eve (that is, the maximum information she
may have access to) for reverse reconciliation [66], and β is the reconciliation efficiency.
This efficiency gives a fraction of the raw keys shared by Alice and Bob after the recon-
ciliation procedure, that is, the length nβIAB of the reconciled bit strings that the parties
are left with. Good efficiency values are then necessary to achieve high secret-key rates
over long distances, but there are also other parameters that need to be considered, such
as FER, since both efficiency and FER are correlated as shown in Sect. 3.1.

In the finite-size scenario, that is, when considering finite-size effects (mainly in the
parameter estimation procedure) the secret-key rate is then given by [67]

K =
n
N

(1 – F)(βIAB – χBE – Δ(n)), (3)

where n is the length of the raw key (a reconciled and therefore common bit string) used
in the privacy amplification procedure, N is the number of exchanged signals (thus, N –
n signals are used for parameter estimation), F is the reconciliation FER, and Δ(n) is a
function related to the security of privacy amplification in the finite-size regime. When
n ≥ 104 this function is essentially determined by [67]

Δ(n) ≊ 7
√

log2(2/ε̄)

n
,

where ε̄ is a smoothing parameter.
Figure 9 shows the finite-size secret-key rate as a function of the signal-to-noise ratio for

several transmission distances L = 20, L = 50, L = 100, L = 125 and L = 150, and different
reconciliation efficiencies β = 0.87, β = 0.9 and β = 0.92. Efficiencies β = 0.87 and β = 0.9
correspond to multiplicatively repeated non-binary LDPC codes of length 103 and 104,
respectively, over GF(210), as reported in Table 2. An efficiency of β = 0.92 corresponds
to multiplicatively repeated non-binary LDPC codes of length 104 over GF(212). For the
secret-key rate calculation, the quantum channel and CV-QKD devices were characterized
using common parameters previously published in the literature [22, 23, 59, 66]. Hence, we
assume the standard loss of a single-mode optical fiber of α = 0.2 dB/km, a constant excess
channel noise of ε = 0.005 (in shot noise units), and Bob’s homodyne detector efficiency
of η = 0.606, with electronic noise Vel = 0.041 (in shot noise units). Alice’s modulation
variance VA (in shot noise units) is considered within the interval [1, 100] and optimized
at each transmission distance to maximize the secret-key rate. Furthermore, as suggested
in [23, 67] we have also considered a raw key length of n = 1012 bits with N = 2n, and a
conservative choice for the security parameter ε̄ = 10–10.
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Figure 9 Secret-key rate for collective attacks with respect to the SNR

Figure 10 Secret-key rate for collective attacks with respect to the distance

Finally, Fig. 10 shows the finite-size secret-key rate with respect to the transmission dis-
tance using the optimal SNR values for each distance, as calculated for Fig. 9. We have
considered the performance and efficiency of multiplicatively repeated non-binary LDPC
codes over GF(210) of lengths N = 103 symbols (long-dashed lines) and N = 104 symbols
(solid lines), that is, as previously reported in Table 2, we considered the reconciliation
efficiencies of β = 0.87 and β = 0.90, respectively, with a FER of 10–1. As shown, the max-
imum achievable distance of a CV-QKD protocol using the proposed codes is around
158 km with a multiplicatively repeated non-binary LDPC code over GF(210) of 103 sym-
bols length, and around 165 km with a code of 104 symbols length, in both cases with
a FER of F = 10–1. Additionally, we have also considered an efficiency of β = 0.925 and
β = 0.935, which are achieved at a higher FER of 80%, both for the codes of length 104

symbols and 103 symbols, respectively. The maximum distance is then slightly increased
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Figure 11 Performance of multiplicatively repeated non-binary LDPC codes for several code lengths N, and
secret-key rate for collective attacks with respect to the distance using short block-length codes

to approximately 169.4 km using the code of length 104 symbols, and 171.7 km using the
code of length 103 symbols.

Regarding the performance of error-correcting codes in the high FER region, in coding
theory it is well known that in this region there is an SNR value at which codes of differ-
ent block-lengths have the same performance. Then, on the one hand, for higher SNRs
the performance of long codes is much better than that of short ones. On the other hand,
however, for lower SNRs the performance of short block-length codes is better. This be-
havior is shown in Fig. 11 (although this can also be seen in Figs. 4, 5 and 7). According
to this behavior, it is interesting to study how short block-length codes can help to in-
crease the maximum distance at which a key can be securely exchanged and reconciled.
Indeed, Fig. 11 also shows that for short codes there is still a range of SNRs for which it is
still possible to exchange secret-keys, and thus increase the maximum secure distance of
a CV-QKD protocol.

In addition, to make this proposal comparable to other results reported in the literature,
we included an additional figure. Figure 12 shows the secret-key rate again for collective
attacks and the finite-size case, but considering the transmission over an ultra-low loss
fiber with attenuation of α = 0.16 dB/km, such as in [18]. The secret-key rate was calcu-
lated considering the same codes, their performance and efficiency, as in Figs. 10 and 11.

4 Conclusions
Multiplicatively repeated non-binary LDPC codes over a finite field of characteristic two
were considered for correcting errors in the low SNR regime. These codes are of particular
interest for information reconciliation in CV-QKD, since they outperform multi-edge type
LDPC codes that were thought to be the best method for low-rate coding. The construc-
tion of these codes is very simple, and there is no need to design codes of different rates.
Only a regular non-binary LDPC code, used as mother code, is required. Lower rate codes
are then constructed from this mother code. They are also inherently rate-adaptive, which
allows for an improved reconciliation efficiency when the channel parameter is estimated,
as is the case with QKD. Furthermore, it has been shown that these codes perform well
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Figure 12 Secret-key rate for collective attacks with respect to the distance using an ultra-low loss fiber

even for short code lengths, and decoding has also been shown to perform with almost
the same computational complexity as that of the mother code, thus making them suit-
able for hardware implementations. The only comparative drawback is the larger number
of decoding iterations needed to ensure good efficiency.

As shown, the proposed codes are able to distill secret-keys from a single mother code
of short and intermediate block-length, that by multiplicatively repeating symbols spans
nearly the whole SNR range, that is, most distances. Additionally, very short block-length
codes working in the high FER regime can likewise be used to distill secret-keys particu-
larly for longer distances.

Author contributions
J.M. constructed the multiplicatively repeated non-binary LDPC codes and decoder, and performed the simulations. J.M.
wrote the first version of the manuscript. J.M. and D.E. reviewed the main manuscript text and discussed the simulation
results. J.M. and D.E. supervised this work.

Authors’ information
Jesus Martinez-Mateo, jesus.martinez.mateo@upm.es.

Funding information
This research has been partially supported by the Ministerio de Ciencia e Innovación (MICINN), Government of Spain
(grant PID2021-122905NB-C22). This work was partially supported by Japan’s Council for Science, Technology and
Innovation (CSTI) under the Cross-ministerial Strategic Innovation Promotion Program (SIP) for “Promoting the application
of advanced quantum technology platforms to social issues” (grant JPJ012367).

Data availability
Data sets generated during the current study are available from the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare no competing interests.

Author details
1Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, Universidad
Politécnica de Madrid, Boadilla del Monte, Spain. 2Networked Quantum Devices Unit, Okinawa Institute of Science and
Technology Graduate University, Onna, Japan.

Received: 25 February 2025 Accepted: 2 June 2025

mailto:jesus.martinez.mateo@upm.es


Martinez-Mateo and Elkouss EPJ Quantum Technology           (2025) 12:71 Page 21 of 23

References
1. Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev Mod Phys. 2002;74(1):145–95. https://doi.org/10.

1103/RevModPhys.74.145.
2. Brassard G, Salvail L. Secret-key reconciliation by public discussion. In: Eurocrypt’93, workshop on the theory and

application of cryptographic techniques on advances in cryptology. Lecture notes in computer science. vol. 765.
New York: Springer; 1994. p. 410–23.

3. Bennett CH, Brassard G, Roberts J-M. Privacy amplification by public discussion. SIAM J Comput. 1988;17(2):210–29.
https://doi.org/10.1137/0217014.

4. Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. Theor Comput Sci.
2014;560:7–11. https://doi.org/10.1016/j.tcs.2014.05.025.

5. Elkouss D, Martinez-Mateo J, Martin V. Information reconciliation for quantum key distribution. Quantum Inf Comput
2011;11(3&4):226–38. https://doi.org/10.26421/QIC11.3-4-3.

6. Martinez-Mateo J, Elkouss D, Martin V. Blind reconciliation. Quantum Inf Comput 2012;12(9&10):791–812. https://doi.
org/10.26421/QIC12.9-10-5.

7. Martinez-Mateo J, Elkouss D, Martin V. Key reconciliation for high performance quantum key distribution. Sci Rep.
2013;3(1576). https://doi.org/10.1038/srep01576.

8. Tarable A, Paganelli RP, Ferrari M. Rateless protograph ldpc codes for quantum key distribution. IEEE Trans Quantum
Eng. 2024;5:1–11. https://doi.org/10.1109/TQE.2024.3361810.

9. Jouguet P, Kunz-Jacques S. High performance error correction for quantum key distribution using polar codes.
Quantum Inf Comput 2014;14(3&4):329–38. https://doi.org/10.26421/QIC14.3-4-8.

10. Martinez-Mateo J, Pacher C, Peev M, Ciurana A, Martin V. Demystifying the information reconciliation protocol
cascade. Quantum Inf Comput 2015;15(5&6):453–77. https://doi.org/10.26421/QIC15.5-6-6.

11. Pacher C, Grabenweger P, Martinez-Mateo J, Martin V. An information reconciliation protocol for secret-key
agreement with small leakage. In: 2015 IEEE international symposium on information theory (ISIT). 2015. p. 730–4.
https://doi.org/10.1109/ISIT.2015.7282551.

12. Van Assche G, Cardinal J, Cerf NJ. Reconciliation of a quantum-distributed Gaussian key. IEEE Trans Inf Theory.
2004;50(2):394–400. https://doi.org/10.1109/TIT.2003.822618.

13. Leverrier A, Alléaume R, Boutros J, Zémor G, Grangier P. Multidimensional reconciliation for a continuous-variable
quantum key distribution. Phys Rev A. 2008;77:042325. https://doi.org/10.1103/PhysRevA.77.042325.

14. Jouguet P, Kunz-Jacques S, Leverrier A. Long-distance continuous-variable quantum key distribution with a Gaussian
modulation. Phys Rev A. 2011;84:062317. https://doi.org/10.1103/PhysRevA.84.062317.

15. Jouguet P, Elkouss D, Kunz-Jacques S. High-bit-rate continuous-variable quantum key distribution. Phys Rev A.
2014;90:042329. https://doi.org/10.1103/PhysRevA.90.042329.

16. Bai Z, Yang S, Li Y. High-efficiency reconciliation for continuous variable quantum key distribution. Jpn J Appl Phys.
2017;56(4):044401. https://doi.org/10.7567/JJAP.56.044401.

17. Wang X, Zhang Y, Yu S, Guo H. High speed error correction for continuous-variable quantum key distribution with
multi-edge type LDPC code. Sci Rep. 2018;8(10543). https://doi.org/10.1038/s41598-018-28703-4.

18. Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H. Long-distance continuous-variable
quantum key distribution over 202.81 km of fiber. Phys Rev Lett. 2020;125(1):010502. https://doi.org/10.1103/
PhysRevLett.125.010502.

19. Mani H, Gehring T, Grabenweger P, Ömer B, Pacher C, Andersen UL. Multiedge-type low-density parity-check codes
for continuous-variable quantum key distribution. Phys Rev A. 2021;103:062419. https://doi.org/10.1103/PhysRevA.
103.062419.

20. Jiang X-Q, Huang P, Huang D, Lin D, Zeng G. Secret information reconciliation based on punctured low-density
parity-check codes for continuous-variable quantum key distribution. Phys Rev A. 2017;95:022318. https://doi.org/10.
1103/PhysRevA.95.022318.

21. Wang X, Zhang Y, Li Z, Xu B, Yu S, Guo H. Efficient rate-adaptive reconciliation for continuous variable quantum key
distribution. Quantum Inf Comput 2017;17(13&14):1123–34. https://doi.org/10.26421/QIC17.13-14-4.

22. Jeong S, Jung H, Ha J. Rate-compatible multi-edge type low-density parity-check code ensembles for
continuous-variable quantum key distribution systems. npj Quantum Inf. 2022;8(6). https://doi.org/10.1038/s41534-
021-00509-9.

23. Milicevic M, Feng C, Zhang LM, Gulak PG. Quasi-cyclic multi-edge ldpc codes for long-distance quantum
cryptography. npj Quantum Inf. 2018;4(21). https://doi.org/10.1038/s41534-018-0070-6.

24. Johnson SJ, Chandrasetty VA, Lance AM. Repeat-accumulate codes for reconciliation in continuous variable quantum
key distribution. In: 2016 Australian communications theory workshop (AusCTW). 2016. p. 18–23. https://doi.org/10.
1109/AusCTW.2016.7433603.

25. Shirvanimoghaddam M, Johnson SJ, Lance AM. Design of raptor codes in the low snr regime with applications in
quantum key distribution. In: 2016 IEEE international conference on communications (ICC). 2016. p. 1–6. https://doi.
org/10.1109/ICC.2016.7510800.

26. Zhou C, Wang X, Zhang Y, Zhang Z, Yu S, Guo H. Continuous-variable quantum key distribution with rateless
reconciliation protocol. Phys Rev Appl. 2019;12:054013. https://doi.org/10.1103/PhysRevApplied.12.054013.

27. Zhang M, Wang Q, Son T, Kim S. Evaluation of adaptive reconciliation protocols for cv-qkd using systematic polar
codes. Quantum Inf Process. 2004;23(157). https://doi.org/10.1007/s11128-024-04371-4.

28. Lucamarini M, Yuan ZL, Dynes JF, Shields AJ. Overcoming the rate–distance limit of quantum key distribution without
quantum repeaters. Nature. 2018;557(7705):400–3. https://doi.org/10.1038/s41586-018-0066-6.

29. Chen J-P, Zhang C, Liu Y, Jiang C, Zhang W, Hu X-L, Guan J-Y, Yu Z-W, Xu H, Lin J, Li M-J, Chen H, Li H, You L, Wang Z,
Wang X-B, Zhang Q, Pan J-W. Sending-or-not-sending with independent lasers: secure twin-field quantum key
distribution over 509 km. Phys Rev Lett. 2020;124:070501. https://doi.org/10.1103/PhysRevLett.124.070501.

30. Wang S, Yin Z-Q, He D-Y, Chen W, Wang R-Q, Ye P, Zhou Y, Fan-Yuan G-J, Wang F-X, Zhu Y-G, Morozov PV, Divochiy AV,
Zhou Z, Guo G-C, Han Z-F. Twin-field quantum key distribution over 830-km fibre. Nat Photonics. 2022;16(2):154–61.
ISSN 1749-4893. https://doi.org/10.1038/s41566-021-00928-2.

https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1137/0217014
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.26421/QIC11.3-4-3
https://doi.org/10.26421/QIC12.9-10-5
https://doi.org/10.26421/QIC12.9-10-5
https://doi.org/10.1038/srep01576
https://doi.org/10.1109/TQE.2024.3361810
https://doi.org/10.26421/QIC14.3-4-8
https://doi.org/10.26421/QIC15.5-6-6
https://doi.org/10.1109/ISIT.2015.7282551
https://doi.org/10.1109/TIT.2003.822618
https://doi.org/10.1103/PhysRevA.77.042325
https://doi.org/10.1103/PhysRevA.84.062317
https://doi.org/10.1103/PhysRevA.90.042329
https://doi.org/10.7567/JJAP.56.044401
https://doi.org/10.1038/s41598-018-28703-4
https://doi.org/10.1103/PhysRevLett.125.010502
https://doi.org/10.1103/PhysRevLett.125.010502
https://doi.org/10.1103/PhysRevA.103.062419
https://doi.org/10.1103/PhysRevA.103.062419
https://doi.org/10.1103/PhysRevA.95.022318
https://doi.org/10.1103/PhysRevA.95.022318
https://doi.org/10.26421/QIC17.13-14-4
https://doi.org/10.1038/s41534-021-00509-9
https://doi.org/10.1038/s41534-021-00509-9
https://doi.org/10.1038/s41534-018-0070-6
https://doi.org/10.1109/AusCTW.2016.7433603
https://doi.org/10.1109/AusCTW.2016.7433603
https://doi.org/10.1109/ICC.2016.7510800
https://doi.org/10.1109/ICC.2016.7510800
https://doi.org/10.1103/PhysRevApplied.12.054013
https://doi.org/10.1007/s11128-024-04371-4
https://doi.org/10.1038/s41586-018-0066-6
https://doi.org/10.1103/PhysRevLett.124.070501
https://doi.org/10.1038/s41566-021-00928-2


Martinez-Mateo and Elkouss EPJ Quantum Technology           (2025) 12:71 Page 22 of 23

31. Liu Y, Zhang W-J, Jiang C, Chen J-P, Zhang C, Pan W-X, Ma D, Dong H, Xiong J-M, Zhang C-J, et al. Experimental
twin-field quantum key distribution over 1000 km fiber distance. Phys Rev Lett. 2023;130(21):210801. https://doi.org/
10.1103/PhysRevLett.130.210801.

32. Ferraz O, Subramaniyan S, Chinthala R, Andrade J, Cavallaro JR, Nandy SK, Silva V, Zhang X, Purnaprajna M, Falcao G. A
survey on high-throughput non-binary ldpc decoders: asic, fpga, and gpu architectures. IEEE Commun Surv Tutor.
2022;24(1):524–56. https://doi.org/10.1109/COMST.2021.3126127.

33. Gallager RG. Low-density parity-check codes. Cambridge: MIT Press; 1963.
34. MacKay DJC, Neal RM. Near Shannon limit performance of low density parity check codes. Electron Lett.

1996;32(18):1645–6. https://doi.org/10.1049/el:19961141.
35. MacKay DJC. Good error-correcting codes based on very sparse matrices. IEEE Trans Inf Theory. 1999;45(2):399–431.

https://doi.org/10.1109/18.748992.
36. Richardson TJ, Shokrollahi MA, Urbanke RL. Design of capacity-approaching irregular low-density parity-check codes.

IEEE Trans Inf Theory. 2001;47(2):619–37. https://doi.org/10.1109/18.910578.
37. Davey MC, MacKay DJC. Low density parity check codes over GF(q). In: IEEE information theory workshop (ITW).

1998. p. 70–1. https://doi.org/10.1109/ITW.1998.706440.
38. Barnault L, Declercq D. Fast decoding algorithm for LDPC over GF(2q). In: ITW 2003, IEEE inf. theory workshop. IEEE;

2003. p. 70–3. https://doi.org/10.1109/ITW.2003.1216697.
39. Voicila A, Declercq D, Verdier F, Fossorier M, Urard P. Low-complexity decoding for non-binary LDPC codes in high

order fields. IEEE Trans Commun. 2010;58(5):1365–75. https://doi.org/10.1109/TCOMM.2010.05.070096.
40. Richardson TJ, Urbanke RL. The capacity of low-density parity-check codes under message-passing decoding. IEEE

Trans Inf Theory. 2001;47(2):599–618. https://doi.org/10.1109/18.910577.
41. Chung S-Y, Forney GD Jr, Richardson TJ, Urbanke RL. On the design of low-density parity-check codes within 0.0045

dB of the Shannon limit. IEEE Commun Lett. 2001;5(2):58–60. https://doi.org/10.1109/4234.905935.
42. Poulliat C, Fossorier M, Declercq D. Design of regular (2,dc)-LDPC codes over GF(q) using their binary images. IEEE

Trans Commun. 2008;56(10):1626–35. https://doi.org/10.1109/TCOMM.2008.060527.
43. Kasai K, Matsumoto R, Sakaniwa K. Information reconciliation for QKD with rate-compatible non-binary LDPC codes.

In: IEEE international symposium on information theory and its applications (ISITA). 2010. p. 922–7. https://doi.org/10.
1109/ISITA.2010.5649550.

44. Mueller R, Ribezzo D, Zahidy M, Oxenløwe LK, Bacco D, Forchhammer S. Efficient information reconciliation for
high-dimensional quantum key distribution. Quantum Inf Process. 2024;23(5):195. ISSN 1573-1332. https://doi.org/
10.1007/s11128-024-04395-w.

45. Kiktenko EO, Trushechkin AS, Lim CCW, Kurochkin YV, Fedorov AK. Symmetric blind information reconciliation for
quantum key distribution. Phys Rev Appl. 2017;8:044017. https://doi.org/10.1103/PhysRevApplied.8.044017.

46. Liu Z, Wu Z, Huang A. Blind information reconciliation with variable step sizes for quantum key distribution. Sci Rep.
2020;10(1):171. https://doi.org/10.1038/s41598-019-56637-y.

47. Andriyanova I, Tillich J-P. Designing a good low-rate sparse-graph code. IEEE Trans Commun. 2012;60(11):3181–90.
https://doi.org/10.1109/TCOMM.2012.082712.100205.

48. Richardson TJ, Urbanke RL. Multi-edge type LDPC codes. Submitted IEEE IT, LTHC-REPORT-2004. 2004.
49. Johnson SJ, Lance AM, Ong L, Shirvanimoghaddam M, Ralph TC, Symul T. On the problem of non-zero word error

rates for fixed-rate error correction codes in continuous variable quantum key distribution. New J Phys.
2017;19(2):023003. https://doi.org/10.1088/1367-2630/aa54d7.

50. Jeong S, Ha J. On the design of multi-edge type low-density parity-check codes. IEEE Trans Commun.
2019;67(10):6652–67. https://doi.org/10.1109/TCOMM.2019.2927567.

51. Pacher C, Martinez-Mateo J, Duhme J, Gehring T, Furrer F. Information reconciliation for continuous-variable quantum
key distribution using non-binary low-density parity-check codes. 2016.

52. Kasai K, Declercq D, Poulliat C, Sakaniwa K. Multiplicatively repeated nonbinary LDPC codes. IEEE Trans Inf Theory.
2011;57(10):6788–95. https://doi.org/10.1109/TIT.2011.2162259.

53. Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo: Morgan Kaufmann;
1988.

54. Slepian D, Wolf J. Noiseless coding of correlated information sources. IEEE Trans Inf Theory. 1973;19(4):471–80.
https://doi.org/10.1109/TIT.1973.1055037.

55. Wyner A. On source coding with side information at the decoder. IEEE Trans Inf Theory. 1975;21(3):294–300. https://
doi.org/10.1109/TIT.1975.1055374.

56. Liveris AD, Xiong Z, Georghiades CN. Compression of binary sources with side information at the decoder using
LDPC codes. IEEE Commun Lett. 2002;6(10):440–2.

57. Declercq D, Fossorier M. Decoding algorithms for nonbinary LDPC codes over GF(q). IEEE Trans Commun.
2007;55(4):633–43. https://doi.org/10.1109/TCOMM.2007.894088.

58. Wei K, Garg D, Nagai R, Tomono T, Amano H. Fpt-ems: an fpga implementation using nb-ldpc code for
continuous-variable quantum key distribution. In: Proceedings of the 15th international symposium on highly
efficient accelerators and reconfigurable technologies. 2025. p. 117–25.

59. Yang S, Yan Z, Yang H, Lu Q, Lu Z, Cheng L, Miao X, Li Y. Information reconciliation of continuous-variables quantum
key distribution: principles, implementations and applications. EPJ Quantum Technol. 2023;10(1):40. https://doi.org/
10.1140/epjqt/s40507-023-00197-8.

60. Laudenbach F, Pacher C, Fung C-HF, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H.
Continuous-variable quantum key distribution with Gaussian modulation—the theory of practical implementations
(adv. Quantum technol. 1/2018). Adv Quantum Technol. 2018;1(1):1870011. https://doi.org/10.1002/qute.201870011.

61. Leverrier A. Information reconciliation for discretely-modulated continuous-variable quantum key distribution. 2023.
https://arxiv.org/abs/2310.17548.

62. Shokrollahi A, Storn R. Design of efficient erasure codes with differential evolution. In: IEEE international symposium
on information theory (ISIT). 2000. p. 1–5. https://doi.org/10.1109/ISIT.2000.866295.

63. Rathi V, Urbanke R. Density evolution, thresholds and the stability condition for non-binary ldpc codes. IEE Proc,
Commun. 2005;152:1069. https://doi.org/10.1049/ip-com:20050230.

https://doi.org/10.1103/PhysRevLett.130.210801
https://doi.org/10.1103/PhysRevLett.130.210801
https://doi.org/10.1109/COMST.2021.3126127
https://doi.org/10.1049/el:19961141
https://doi.org/10.1109/18.748992
https://doi.org/10.1109/18.910578
https://doi.org/10.1109/ITW.1998.706440
https://doi.org/10.1109/ITW.2003.1216697
https://doi.org/10.1109/TCOMM.2010.05.070096
https://doi.org/10.1109/18.910577
https://doi.org/10.1109/4234.905935
https://doi.org/10.1109/TCOMM.2008.060527
https://doi.org/10.1109/ISITA.2010.5649550
https://doi.org/10.1109/ISITA.2010.5649550
https://doi.org/10.1007/s11128-024-04395-w
https://doi.org/10.1007/s11128-024-04395-w
https://doi.org/10.1103/PhysRevApplied.8.044017
https://doi.org/10.1038/s41598-019-56637-y
https://doi.org/10.1109/TCOMM.2012.082712.100205
https://doi.org/10.1088/1367-2630/aa54d7
https://doi.org/10.1109/TCOMM.2019.2927567
https://doi.org/10.1109/TIT.2011.2162259
https://doi.org/10.1109/TIT.1973.1055037
https://doi.org/10.1109/TIT.1975.1055374
https://doi.org/10.1109/TIT.1975.1055374
https://doi.org/10.1109/TCOMM.2007.894088
https://doi.org/10.1140/epjqt/s40507-023-00197-8
https://doi.org/10.1140/epjqt/s40507-023-00197-8
https://doi.org/10.1002/qute.201870011
https://arxiv.org/abs/2310.17548
https://doi.org/10.1109/ISIT.2000.866295
https://doi.org/10.1049/ip-com:20050230


Martinez-Mateo and Elkouss EPJ Quantum Technology           (2025) 12:71 Page 23 of 23

64. Hu X-Y, Eleftheriou E, Arnold DM. Regular and irregular progressive edge-growth Tanner graphs. IEEE Trans Inf Theory.
2005;51(1):386–98. https://doi.org/10.1109/TIT.2004.839541.

65. Tomamichel M, Martinez-Mateo J, Pacher C, Elkouss D. Fundamental finite key limits for one-way information
reconciliation in quantum key distribution. Quantum Inf Process. 2017;16(11):280. https://doi.org/10.1007/s11128-
017-1709-5.

66. Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf NJ, Tualle-Brouri R,
McLaughlin SW, Grangier P. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys
Rev A. 2007;76:042305. https://doi.org/10.1103/PhysRevA.76.042305.

67. Leverrier A, Grosshans F, Grangier P. Finite-size analysis of a continuous-variable quantum key distribution. Phys Rev A.
2010;81:062343. https://doi.org/10.1103/PhysRevA.81.062343.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TIT.2004.839541
https://doi.org/10.1007/s11128-017-1709-5
https://doi.org/10.1007/s11128-017-1709-5
https://doi.org/10.1103/PhysRevA.76.042305
https://doi.org/10.1103/PhysRevA.81.062343

	Efficient reconciliation of continuous variable quantum key distribution with multiplicatively repeated non-binary LDPC codes
	Abstract
	Keywords

	Introduction
	Background
	Information reconciliation with non-binary low-density parity-check codes
	Multiplicatively repeated non-binary LDPC codes
	Non-binary LDPC decoding algorithm

	Results
	Performance and reconciliation efficiency
	Secret-key rate

	Conclusions
	References

