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Abstract
An open-source AES GPU implementation has been developed from scratch with CUDA.
The implementation is based in lookup tables and supports ECB, CTR, CBC∗, and CFB∗

operation modes. Factors such as the parallelism level, the use of constant and shared
memory, asynchronous page-locked IO, and overlapping between data transfers and cal-
culations has been taking into account. The results show a speedup peak of 119% with
CTR encryption against OpenSSL’s CPU implementation with files larger than 60 MB
(without AES-NI support) and a peak of 87% with CBC/CFB decryption of files larger
than 125 MB. The maximum registered throughput is 237 MB/s, above drive buffer read
rate of 208 MB/s (non-cached). Although it is expected to obtain performance yields
around 55% with CTR encryption and 49% with CBC or CFB decryption, it is recom-
mended to consider the use of a CPU implementation with AES-NI hardware until the
current implementation is further analysed and, if possible, optimized.

Index terms— High Performance Computing (HPC), General Purpose Graphics Process-
ing Unit (GPGPU), Advanced Encryption Standard (AES)

*only decryption

Resumen
Se ha realizado una implementación GPU de código abierto en CUDA del cifrador AES
con tablas de búsqueda en los modos de operación ECB, CTR, CBC∗, y CFB∗. Se han
tenido en cuenta distintos factores de rendimiento, entre ellos el nivel de paralelismo,
el uso de memoria constante y compartida, la lectura ası́ncrona de ficheros en memoria
no paginada, y el solapamiento de transferencias y cómputo. Se ha alcanzado una mejora
máxima de 119% para el cifrado en modo CTR con respecto a la implementación CPU de
OpenSSL (sin AES-NI) y una mejora máxima del 87% para el descifrado CBC/CFB. El
mayor rendimiento registrado es de 237 MB/s, que esta por encima de la tasa de lectura
con buffer del disco de 208 MB/s (sin cache). Aunque se pueden obtener mejoras del
55% para el cifrado CTR con ficheros con tamaño mayor de 60 MB y del 49% para
descifrado CBC o CFB con ficheros mayores de 125 MB, se recomienda considerar el
uso de una implementación CPU junto con hardware con soporte de la extensión AES-NI
hasta que la implementación actual se analize en mas detalle y, si es posible, se mejore su
optimización.

Palabras clave— Computación de Alto Rendimiento (HPC), Cómputos de Propósito Ge-
neral en Unidades de Procesamiento de Gráficos (GPGPU), Advanced Encryption Stan-
dard (AES)

*solo descrifrado



Preface

T here is an increasing need for efficient solutions to the computa-
tionally intensive cryptography found in many specialized sys-

tems where the cipher usually act as a bottleneck that cannot sustain
high data transference rate situations. For this reason, it is proposed
to explore the viability of cipher algorithms in GPU architectures. In
particular, we will measure the performance improvements of a GPU
accelerated AES implementation. The benefits of using this computing
platforms are clear when we have to process large amounts of data as
occurs, for example, in an organization which has to deal with highly
sensitive information and consequently requires to perform numerous
ciphered backups. These organizations could be able to reduce costs
and time by using a GPU cluster for backup purposes. We should nei-
ther forget about the proliferation of increasingly affordable high-end
GPUs the end user could take advantage of with a GPU accelerated
cryptography standard library. Due to the intrinsic intensity of oper-
ations during encryption or decryption the CPU may need to use all
its resources to finish processing large files in a reasonable time. As a
result, a GPU counterpart would be greatly convenient to exploit its un-
used capacity to solve the problem, even in less time, without saturating
the main computing unit that could still be used for other tasks.
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CHAPTER 1

Introduction

This paper explore different available alternatives regarding to the GPU acceleration of an
Advanced Encryption Standard (AES) software implementation. The aim is to present if
GPUs could be used to efficiently satisfy the high-throughput necesities when processing
large rates of data. The reader will be thoroughly introduced in the area of GPU cipher ac-
celeration so he can obtain a better understanding of the challenges and possibilities GPU
hardware has to offer. For this reason, we will review the characteristics of symmetric
ciphers, the impact of the block mode of operation for parallelization, and the advantages
and disadvantages of diverse parallel programming models. We will discuss the specific
details of a high-performance AES implementation along with its performance outcomes
and limitations. The work here presented is materialized in Paracrypt [1], an open-source
cryptographic library the reader is free to fork, improve, or use for his own interests, under
the GNU General Public License v3.0 (GPLv3) [27].

1.1 Symmetric ciphers

Symmetric ciphers are those which use the same cryptographic key for encryption and
decryption of a text. We will focus in symmetric ciphers because they are more suitable
for large quantities of data. The encrypted output size of asymmetric ciphers is asymp-
totic, which means that the ciphertext take more disk space than the original plaintext.
For large files this overhead is considerably high. Furthermore, their performance tend to
be several times lower than the symmetric counterpart as they have to manipulate larger
keys. Consequently, asymmetric ciphers are preferably used with small plaintexts. For
instance, they are often used as a part of a hybrid cryptosystem [2] where the asymmetric
cipher is used to encrypt symmetric encryption keys. In this way, we can obtain the best
of both worlds: we can encrypt the major part of the data with an efficient symmetric
algorithm at the same time we can use the asymmetric encryption for a safe key exchange
process. Note that if S wants to secretly transmit a message to R with a symmetric cipher,
first, both must previously know the shared secret key. Normally R does not know the key
beforehand so we have to find a way to safely transmit this key.

1



1.1. SYMMETRIC CIPHERS CHAPTER 1. INTRODUCTION

1.1.1 Stream ciphers

Stream ciphers generate the protected output by combining the keystream, a sequentially
generated pseudo-random key, with the plaintext. The seed from which all the keystream
digits will be generated effectively serves as the key from which the receiver will be able
to decrypt the message. Each successive keystream bit to be generated is dependent on
the internal state, this is the same as stating that the generation is strictly sequential. As
a result, it is hard to imagine how we could massively parallelize a conventional∗ stream
algorithm with GPUs.

Nevertheless, these ciphers are used for their simplicity and easiness of implementation in
hardware. Some ciphers are even designed to display some signs of parallelism, Trivium
for example, can generate its keystream in chunks up to 64 bits [3]. Software can take
advantage of this by making operations with 16, 32, or 64 bit integers but it cannot be
further parallelized.

1.1.2 Block ciphers

On the other hand, block ciphers operate by applying the same transformation to each
fixed size group of bits. This is parallel by definition because each block can be treated
independently.

Figure 1.1: ECB encryption Figure 1.2: ECB decryption

Unfortunately, this raw mode of operation, the Electronic Code-Book (ECB), should be
avoided [4, Sec. II.A] because it can lead to some security leaks: repetitions in the original
text can be also found as repetitions in the ciphered text [5, Sec. 2.1]. An attacker could
perform an statistical analysis and, for example, correlate information about passwords in
a database.

The Cipher Block Chaining (CBC) mode mode tries to fix this problem by XORing the
cipher input of each block with the output of the previous block. Although its the most

∗Few stream ciphers support massive parallelization. CryptMT is one of those exceptions.
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1.1. SYMMETRIC CIPHERS CHAPTER 1. INTRODUCTION

used mode of operation, it has one major drawback, its encryption is unparallelizable.
Fortunately, the decryption can be simultaneously computed because the output of each
decrypted block has to be XORed with the ciphertext of the previous block to which we
already have access as can be seen in figure 1.4.

Figure 1.3: CBC encryption Figure 1.4: CBC decryption

To ensure the semantic security that avoid attackers to obtain information when reusing
the same scheme with the same key, we have to introduce a random component that
allow to obtain a different output when ciphering the same message with the same key.
For this, most modes use what is called an initialization vector (IV) [5, Appx. C], a
random starting block that will propagate its variability thorough the algorithm as happens
with the CBC mode. This puts into perspective the insecurity of the ECB algorithm for
which the IV would be useless [6] because each block is treated independently and thus,
it wouldn’t be propagated to the remaining blocks. In the CBC decryption mode the
IV would not be able to propagate neither as it would only affect the first block, that’s
the reason why we cannot think about switching the XOR order if we are interested in
speeding-up encryption instead of decryption. The Propagating Cipher Block Chaining
(PCBC) mode is designed to also propagate small changes during decryption [7] yet at
the expense of making it completely unparallelizable.

Considering that the plaintext will probably not be multiple of the block size, we need to
define a padding scheme to ensure that ECB and CBC modes can correctly operate with
fixed size divisions of the message [5, Appx. A]. It can be done by simply appending zeros
to the end of the message but this could get us into problems with plaintexts that already
contain zeros at the tail. It would be better to restrain ourselves to standardized padding
schemes defined, for example, in the PKCS#7 [8, Sec. 10.3]. It should be noted that
padding schemes always leak some information about the original length of the plaintext
[9]. Whereas in some applications it might not be of importance to publish the original
plaintext length, in others it may be critical to avoid size-based correlation attacks. For
this reason, we can go further and apply a random size padding [10] that could increase
the message length, up to a certain limit, by several blocks.

Complex solutions such as the Ciphertext Stealing (CTS) [11] can also solve the padding
problem but there are better known alternatives that can get rid of these complications:
The Cipher Feedback (CFB) mode is very similar to the CBC mode but does not need
padding because a block output is obtained by XORing the plaintext with the cipher out-
put of the previous block and thus the plaintext is never used for the input of the block

3



1.1. SYMMETRIC CIPHERS CHAPTER 1. INTRODUCTION

cipher encryption (the input for the fist block is the IV). The CFB decryption can also be
parallelized as happened with the CBC mode.

Figure 1.5: CFB encryption

Figure 1.6: CFB decryption

The Counter mode (CTR) neither have to deal with padding as it does not feed the block
cipher with the plaintext, instead, a generated keystream is ciphered (as happens in a syn-
chronous stream cipher) and XORed with the plaintext. The keystream can be composed
of any deterministic sequence. The most simple and popular approach is to cipher each
block with an incremental counter, hence the name of the mode. The algorithm is con-
sidered to be secure even if the counter sequence is public. The great advantage of this
mode is its parallelism support for both encryption and decryption. In this case we do
not have an IV because blocks do not produce feedback between them. Alternatively, a
nonce is to be used [5, Appx. B]. The nonce is an acknowledged randomly generated
block-size number that is combined (addition, xor, or any other suitable operation) with
each sequence value to act as a arbitrary offset for the counter. Finally, note in fig. 1.7
how the CTR mode uses the block cipher in encryption mode. In the CTR mode we can
cipher and decipher with the same encryption code.

When dealing with large datasets, an important characteristic to take into account is the
ability to randomly access information by decrypting a portion of the ciphertext without
needing to decrypt the whole file. If an algorithm is completely paralellizable at de-
cryption it means that each block can be decrypted individually. For this reason, those
algorithms - ECB, CBC, CFB, and CTR - support random read access.

4
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Figure 1.7: CTR encryption

Figure 1.8: CTR decryption

1.1.3 Advanced Encryption Standard

The Advanced Encryption Standard (AES) [19] is a subset of the Rijndael cipher specified
by the National Institute of Standards and Technology (NIST). The AES uses a fixed block
size of 128 bits (16 bytes) whereas, in contrast, Rijndael specifies a set of ciphers with
different keys and block sizes. The AES can use a key of 128, 192, and 256 bits that are
expanded into round keys of 128 bits. Using a bigger key size increases security because
more transformation rounds are performed during encryption. Each round/cycle features a
series of steps with both substitutions and permutations. The AES is fast in both hardware
and software with the use of lookup tables and has become the most popular and widely
accepted symmetric-key cryptographic algorithm.

1.2 High performance platforms

Traditionally, GPU programming has required the use of languages specialized in shaders
and textures [12] typically used for computer graphics. However, new platforms such as
OpenCL and CUDA are targeting General-Purpose Computing on Graphics Processing
Units (GPGPU) and support arithmetic operation with integers which make them attrac-
tive for the parallelization of cryptographic algorithms.

5
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Whilst OpenCL can provide a higher degree of portability targeting any many-core GPU
or CPU architecture it also impedes to explicitly target hardware peculiarities. OpenCL
portability makes it an ideal tool for heterogeneous computing but CUDA permit to de-
velop the source code taking into account specific architectural details which, for most
applications, permit to reach higher performances [47]. Furthermore, even though CUDA
is proprietary to NVIDIA and can only be used with NVIDIA GPUs, it has more advanced
documentation, a bigger community of developers, more libraries, and more advanced
compilers, tools and profilers. We choose CUDA because its both more attractive for
development and can typically achieve higher performances than OpenCL.

On the CPU side, we have to mention the Advanced Encryption Standard Intruction Set
(AES-NI), an extension of Intel and AMD x86 architecture designed to accelerate AES
encryption and decryption. AES-NI is available in OpenSSL, a very popular library avail-
able for most Unix operative systems whose core implement multiple cryptographic func-
tions.

6



CHAPTER 2

Implementations

By using the OpenSSL CPU AES implementation as a reference it has been possible
to stablish the foundations of a completely new (CUDA) GPU cryptographic library,
Paracrypt. The code of the key schedule sequential algorithm has been reutilized but
(everything else, including) the core of the software has been designed completely from
scratch to suit GPU parallel computing. The software can perform AES cryptographic op-
erations at different levels of parallelism with different memory configurations (usage of
constant memory), support asynchronous input/output operations with page-locked mem-
ory, and supports different modes of operation (ECB and CTR encryption and decryption,
and CBC and CFB decryption) with multiple streams and devices. The Boost library [25]
is used for logs [25, Ch. 1], parsing of program options [25, Ch. 21], threads and synchro-
nization [25, Ch. 38], and unitary tests [25, Part IV]. In addition, Valgrind [26] has been
used to detect and fix memory leaks. The software is prepared to be compiled in Linux
as a shared library or as a binary tool for its use in the command line. The software can
also be compiled in development, debug or release modes: the development mode prints
a more detailed and extended trace of the execution of the program than the debug mode
and it is useful to find hidden bugs. Naturally, these prints and asserts can significantly
reduce the performance of the program and are bypassed in the release mode which also
enables optimization flags in the nvcc compiler.

2.1 Thread scheme

To strive for a high occupancy we first calculate the fixed block size (threads per block)
that we will use to launch kernels and fully utilize the GPU hardware threading resources.
As it is described in the Achieved Occupancy chapter at the NVIDIA R© NsightTM Appli-
cation Development Environment for Heterogeneous Platforms User Guide [16]:

”There is a maximum number of warps which can be concurrently ac-
tive on a Streaming Multiprocessor (SM), as listed in the Programming
Guide’s table of compute capabilities. Occupancy is defined as the ra-
tio of active warps on an SM to the maximum number of active warps
supported by the SM.”
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2.1. THREAD SCHEME CHAPTER 2. IMPLEMENTATIONS

We can calculate the numbers of threads per block that will permit to create blocks that
will fit perfectly in the device and utilize the maximum number of active warps and blocks
by dividing the maximum number of resident threads per multiprocessor by the maximum
number of resident blocks per multiprocessor [23]. The maximum number of resident
threads per multiprocessor is defined as the number of maximum warps per multiproces-
sor per the warp size.

block size =
max. resident threads per SM
max. resident blocks per SM

=
max. resident warps per SM ·warp size

max. resident blocks per SM

In CUDA, the maximum number threads per multiprocessor can be obtained at run-time
with a call to cudaGetDeviceProperties(). The maximum number of resident blocks per
SM, however, has to be hard-coded to match table 2.1 [14, Appx. G, Table 14]. In
the Paracrypt implementation, the number of threads per thread blocks to be used for
encryption and decryption is calculated when instantiating a new object of type CUDACi-
pherDevice.

paracrypt::CUDACipherDevice::CUDACipherDevice(int device)

{

cudaGetDeviceProperties(&(this->devProp), device);

...

int M = this->devProp.major;

int m = this->devProp.minor;

if (M <= 2) {

this->maxBlocksPerSM = 8;

} else if (M <= 3 && m <= 7) {

this->maxBlocksPerSM = 16;

} else {

this->maxBlocksPerSM = 32;

}

...

this->nThreadsPerThreadBlock = this->devProp.maxThreadsPerMultiProcessor / this->maxBlocksPerSM;

}

Table 2.1: Compute capabilities

Compute Capability
Technical Specifications 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2
Maximum number of concurrent kernels 16 4 32 16 128 32 16
Maximum number of threads per block 1024
Max. resident threads per multiprocessor 1536 2048
Max. resident warps per multiprocessor 48 64
Warp size 32
Max. resident blocks per multiprocessor 8 16 32

Finally, before the kernel is called we have to calculate the grid size given the number
of plaintext blocks (or ciphertexts for decryption) [23] for a particular operation. If we
have previously established that the device will use 192 threads per block and we will

8



2.2. DATA TRANSFERS & COMPUTATION CHAPTER 2. IMPLEMENTATIONS

use an implementation that uses four threads to cipher each input block then, to cipher
for example 97 blocks, the grid size would be 3 = d97

48e since each thread-block of 192
threads can cipher a maximum of 192/4 = 48 input-blocks. In this last example, the
two first blocks of the grid would compute the first 96 input-blocks and a third block
of threads would have to be included to compute the last input-block. We have to be
careful and include a conditional check in the CUDA kernels in such a way that we do
not do any unwanted operation with threads that do not have any input-data assigned. If
a CUDACipherDevice object has been already instantiated we can easily obtain the grid
size and threads per block and run a kernel as is shown in the following fragment of code:

int paracrypt::CudaEcbAES4B::encrypt(const unsigned char in[],

const unsigned char out[],

int n_blocks)

{

...

// 4B implementation - 4 threads per block

int gridSize = this->getDevice()->getGridSize(n_blocks, 4);

int threadsPerBlock = this->getDevice()->getThreadsPerThreadBlock();

...

// call kernel with correct grid and block size

__cuda_ecb_aes_4b_encrypt__<<<gridSize,threadsPerBlock>>>(...)

...

}

2.2 Data transfers & computation

The GPU has its own memory hierarchy and, for this reason, cryptographic data has to be
read from the input file in the host, loaded in memory, and then transferred to the GPU
before performing any computation. Host-device transfers are costly and should be one
of the main optimization concerns. Data read from the input file is stored in a buffer
before being transferred to the GPU. By default this buffer would be host-paginated if it
is allocated using malloc(), but CUDA cudaHostAlloc() function can be used to allocate
pinned memory (also known as page-locked memory). This type of memory is directly
available in RAM and does not have the pagination overhead. As a result, pinned memory
permit to achieve higher transfer bandwidths [29].

Ideally, we want to allocate as many pinned memory as RAM is available in order to re-
duce the penalty associated with per-operation overheads, fitting the entire file in RAM
if possible. However, over-allocation of pinned memory can substantially reduce the
amount of physical memory stagnating the operative system and other processes and lead-
ing to poorer performances. In our implementation, the Pinned class (see fig. 2.1) allow
IO objects to reserve pinned memory without trying to allocate more RAM than the avail-
able in the system or leaving the system without a reasonable amount of RAM. In an
OpenCL implementation we should had also verified that we were not trying to allocate

9
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more page-locked memory with mlock() [28, Sec. 3] (in Linux) than the permitted by
RLIMIT MEMLOCK [28, Sec. 2] limit, but in a CUDA implementation the cudaHostAl-
loc() function is not subjected to this limitation. In our code we also take into account the
amount of global memory available in the system GPU devices as well as the input file
size to avoid allocating more RAM that it is actually needed to reach a minimum number
of host-device transfers. Additionally, the cost of calls to cudaHostAlloc() for progres-
sively bigger quantities of memory is increasingly higher meanwhile the doubtful benefits
of using larger staging areas are probably lower than the allocation cost itself. For this
reason, our application can be configured with a limit for the staging area between the
host and the GPUs.

Furthermore, transfers time can be masked by overlapping memory copies and computing
[30]. The overlapping can be achieved by launching multiple kernels in parallel, each one
would process a fraction of file available at the pinned buffer. The Launcher class (see fig.
2.1) search all available GPUs in the system and their number of streams, then creates one
CudaAES cipher per GPU-stream (the copy constructors permit multiple ciphers in the
same GPU device to share the same copy of keys and tables), and finally uses a BlockIO
object to iteratively read chunks of data to be operated with each subsequent CudaAES
cipher. The Launcher object can then wait for operations to finish in the order those
where issued with checkWait(), or alternatively, actively scan (busy-wait) all ciphers with
checkWait() until any of them report to have finished with the encryption or decryption
operation.

When a operation has finished, the modified chunk is written to the output file with the
BlockIO object and, if we have yet not reached the last chunk, another chunk is read with
the IO object. The BlockIO object makes sure so that the launcher does not have to worry
about padding or bytes offset when using the random access functionality (see sec. 2.7):
zeros are appended and removed for CTR mode and PKCS#7 is used in CBC, CFB, and
ECB modes.

A simple solution for IO operations would be to access to the input file each time the read
function is called and wait the operation to complete. However, by doing this, we would
have to stop the progress of the application not being able to do any useful operations
until the blocking call finishes. This is the reason why it has been decided to implement
an asynchronous approach (see fig. 2.2). The asynchronous approach uses threads and
synchronization methods (locks) from the Boost library: a reader thread is continuously
reading chunks from the input file and placing them in a queue so that when the Launcher
call the read method they can be directly extracted from the queue and there are no inter-
ruptions to perform IO communications (unless the queue is empty when the Launcher
would have to wait until more chunks are available). The is another writer that perform
write operations asynchronously when the Launcher places the chunks to be written in a
output queue without performing any IO operation himself.
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Figure 2.1: Paracrypt UML class diagram

Figure 2.2: Asynchronous input/output
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2.3 High-level AES description

AES uses a symmetric key of 128, 192, or 256 bits for both encryption and decryption.
Although the same input key is used for encryption and decryption, the key is expanded
into new several round keys of the same length, 128 bits, using a key expansion algorithm
that will generate different round keys from encryption and decryption. There is one 128
bit round key for each round plus one additional round key for an initial round key step.
The number of rounds is determined by the input key size, 10 transformation rounds for a
128 bit key, 12 transformation rounds for a 192 bit size key, and 14 transformation rounds
for a 256 bit key. Once the rounds keys has been computed we can use the following
template for our implementation (the transformation applied in each round is explained in
the following section 2.4).

// expand key and call the encryption/decryption function

void aes_encrypt(uint128_t blocks[], int nBlocks, uint128_t encryptionRoundKeys[], int keyBits) {

for(each block in blocks) {

uint128_t state = block;

// Initial round key - combine key with block of the round

state = state ^ encryptionRoundKeys[0];

for(int i = 1; i <= 10; i++) {

TRANSFORMATION_ROUND(state,encryptionRoundKeys[i]);

}

// Additional rounds for 192 or 256 bit keys

if(keyBits >= 192) {

TRANSFORMATION_ROUND(state,encryptionRoundKeys[11]);

if(keyBits == 256) {

TRANSFORMATION_ROUND(state,encryptionRoundKeys[12]);

}

}

// Final round

FINAL_ROUND();

// Update result in-place

block = state;

}

}

2.4 T-tables AES implementation

The cipher state, a 4x4 bytes matrix, is updated in each round by columns: S0, S1, S2, S3


S0 S1 S2 S3

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33
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As the Rijndael authors explain in the AES proposal, with 32 bits processors all the steps
applied in a round transformation can be performed with four lookup tables [22, Sec.
5.2]: T0, T1, T2, T3. This allows a much faster implementation that only needs four table
lookups and four XORs per column. The T-tables implementation, for example, avoids
to directly compute the MixColumns step, which performs a Galois multiplication with a
constant polynomial and that, by itself, would require far more operations than a whole
T-table round.

S′0 = T0[a00]⊕T1[a11]⊕T2[a22]⊕T3[a33]⊕ k0

S′1 = T0[a01]⊕T1[a12]⊕T2[a23]⊕T3[a30]⊕ k1

S′2 = T0[a02]⊕T1[a13]⊕T2[a20]⊕T3[a31]⊕ k2

S′3 = T0[a03]⊕T1[a10]⊕T2[a21]⊕T3[a32]⊕ k3

To obtain the updated state (S′0, S′1, S′2, S′3), each 256-entry table is accessed with one of
the state bytes (ai j) and the 32 bit results are XORed. Finally, each column is XORed
with one of the four 32 bit words in which the 128 bit round key is divided.

CPU cryptography libraries (normally) provide support for both little-endian and big-
endian machines. For this reason, all the data manipulated during encryption or decryp-
tion is defined in machine order and stored in 32 bit unsigned integers: This includes the
round keys and the T-tables. The input data is a string however, a sequence of bytes in big-
endian order. As a result, OpenSSL for instance, needs to pre-process each input block
with GETU32, a macro that convert four bytes from big-endian order to machine order.
Finally, the results are converted back to big-endian order using PUTU32 over the four
words of each AES block. On the contrary, on a CUDA implementation we can safely
bypass this conversion and its overhead because we know beforehand that NVIDIA GPUs
use a little-endian byte order [14, Ch. 4] - at the beginning of the CUDA C Programming
Guide chapter 4 is stated:

“The NVIDIA GPU architecture uses a little-endian representation.”

Paracrypt implementations copy the key rounds, the T-tables, and the blocks data to the
GPU device in a big-endian order without doing any conversion to the input/output data;
loading big-endian data into the GPU little-endian registers is not a problem because
we only use XOR logic operations in the GPU code - we do not execute multiplications,
divisions, or any other type of numerical operation with integers. The inverse cipher oper-
ations used for decryption can be implemented with another set of tables in the same way
the previously explained tables are used for encryption. The tables have been obtained
from OpenSSL source code [24] (aes-core.c) and adapted for our purposes.

Considering that the tables and round keys will not suffer any modifications during the
execution of encryption/decryption kernels it reasonable to determine that constant mem-
ory is a suitable storage for them. Constant memory is a read-only memory accessed
through constant cache. Constant memory is intended to be broadcast [31] to all threads
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in a warp reducing the required memory bandwidth when all threads in a warp access the
same value [32] [14, Sec. 5.3.2]. Since the round keys are accessed at the same time
by all threads within a warp it is safe to think we can obtain a boost in performance by
using constant memory for them. Contrariwise, threads access the T-Tables in different
locations and the usage of constant memory for them could be inefficient.

2.5 Key schedule

AES key schedule algorithm is heavily sequential and would not benefit from a GPU par-
allel implementation. Therefore, we have re-utilized OpenSSL modules for the generation
of the round keys. The source code for the AES set encrypt key() and AES set decrypt key()
functions that generate the round keys can be found at the aes core.c [24] file in OpenSSL
GitHub repository. The resultant key rounds values are stored in machine order so they
have to be converted to big-endian order with endian.h standard header and the htobe32()
function before copying them to the GPU.

2.6 Parallelism

The AES block cipher can be implemented with different levels of parallelism. On one
hand, at block-level parallelism each thread in the grid is responsible for the encryp-
tion/decryption of an individual block. Each thread only need to have access to the state
of its own block. In consequence, the state can remain stored in registers throughout the
execution and there is no need for synchronization between threads, a huge advantage
over further parallelism where a block is processed by more than one thread. In the latter
later case, each column (4B parallelism - 4 threads per block) or each two columns (2B
parallelism - 2 threads per block) of the state could be processed by a thread at the expense
of using synchronization in conjunction with shared memory. Finally, a last implementa-
tion uses 16 threads per block (16B parallelism): each thread access to the T-tables and
the round key at a byte level to compute an individual byte (a′i j) of each new state.

The 16B implementation is expected to yield far superior results than the others when the
input data is long enough to ensure that all GPU threads are being used. On the other hand,
8B, 4B, and 1B implementations offer progressively a higher occupancy with less data
and would accordingly offer better results with smaller files. The 16B implementation is
simpler, easier to understand, and more suitable for our purposes. In any case, all parallel
versions have been implemented in CUDA so we can further explain their differences and
experimentally analyze their performances.
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2.6.1 16B parallelism

In this implementation each thread matches a block and, as a result, each 128-bit block
of data can be indexed with the the CUDA thread number. Each block consist of four
32-bit words so we multiply the block index per four to point to the first of the 32 bit
words. Then, the block words one, two, three, and four can be accessed with d[p], d[p+
1], d[p+2], d[p+3], respectively.

__global__ void __cuda_ecb_aes_16b_encrypt__(

int n, // Number of blocks we have to encrypt

uint32_t* d, // pointer to (4*n) 32-bit words of data

uint32_t* k, // round keys

int key_bits,

uint32_t* T0,

uint32_t* T1,

uint32_t* T2,

uint32_t* T3

)

// data block index

int bi = ((blockIdx.x * blockDim.x) + threadIdx.x);

int p = bi*4;

...

// save results

d[p] = s0;

d[p+1] = s1;

d[p+2] = s2;

d[p+3] = s3;

}

The columns cannot be updated in-place because, due to the ShiftRows operation, the
original columns are needed to compute each of the four new columns. For this reason
we use eight 32-bit integers instead of four to store the state. We interchangeably use
s0, s1, s2, s3 and t0, t1, t2, t3 to store the results of each new round and calculate the next
one. The code used to update the first column of the state in each round can be found
below:

uint32_t s0,s1,s2,s3,t0,t1,t2,t3;

...

// We cannot overwrite s0 because

// we need s0 to calculate the other

// three of columns of the state!

t0 =

T0[(s0 ) & 0xff] ^ // T0[a00] ^

T1[(s1 >> 8) & 0xff] ^ // T1[a11] ^

T2[(s2 >> 16) & 0xff] ^ // T2[a22] ^

T3[(s3 >> 24) ] ^ // T3[a33] ^

k[round_number*4+0];

t1 = ...

t2 = ...

t3 = ...

If we want to access each byte of the state using pointers instead of using logic operators
we first obtain a byte pointer (s0p, s1p, s2p, s3p, ...) to the first element of each state
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column and then we can access, for example, to the first, second, third, and four byte
of the first state column with s0p[0], s0p[1], s0p[2], s0p[3], ..., respectively. Below is the
code to execute two consecutive AES rounds using these pointers:

uint8_t* s0p = (uint8_t*) &s0;

uint8_t* s1p = (uint8_t*) &s1;

uint8_t* s2p = (uint8_t*) &s2;

uint8_t* s3p = (uint8_t*) &s3;

uint8_t* t0p = (uint8_t*) &t0;

uint8_t* t1p = (uint8_t*) &t1;

uint8_t* t2p = (uint8_t*) &t2;

uint8_t* t3p = (uint8_t*) &t3;

// initial round

...

// round 1

t0 = T0[s0p[0]] ^ T1[s1p[1]] ^ T2[s2p[2]] ^ T3[s3p[3]] ^ k[4];

t1 = T0[s1p[0]] ^ T1[s2p[1]] ^ T2[s3p[2]] ^ T3[s0p[3]] ^ k[5];

t2 = T0[s2p[0]] ^ T1[s3p[1]] ^ T2[s0p[2]] ^ T3[s1p[3]] ^ k[6];

t3 = T0[s3p[0]] ^ T1[s0p[1]] ^ T2[s1p[2]] ^ T3[s2p[3]] ^ k[7];

// round 2

s0 = T0[t0p[0]] ^ T1[t1p[1]] ^ T2[t2p[2]] ^ T3[t3p[3]] ^ k[8];

s1 = T0[t1p[0]] ^ T1[t2p[1]] ^ T2[t3p[2]] ^ T3[t0p[3]] ^ k[9];

s2 = T0[t2p[0]] ^ T1[t3p[1]] ^ T2[t0p[2]] ^ T3[t1p[3]] ^ k[10];

s3 = T0[t3p[0]] ^ T1[t0p[1]] ^ T2[t1p[2]] ^ T3[t2p[3]] ^ k[11];

The OpenSSL implementation uses logic operators to access individual bytes in the state.
For example, the second byte (out of four) in the 32 bit word (uint32 t) s0 can be ac-
cess with a shift and an AND operation: “(s0� 8) & 0xff ”. In the CPU these two basic
operations can be less costly than using a load instruction with a pointer and a byte in-
dex/offset. In the GPU, however, even though integer operations are natively supported in
hardware they have a small throughput compared to 32-bit floating point operations (table
2.2) [14, Sec. 5.4.1] for which the GPU prepared for. In compute capability 3.0, for in-
stance, although 32-bit bitwise AND operations have a throughput of 160 operations per
clock cycle per multiprocessor, integer shift operations have an inferior throughput of 32
compared with the throughput of 192 for 32-bit floting point add and multiply operations.
Consequently, it is reasonable to think that, in the GPU, indexed access to the bytes of a
32-bit word can have similar, if not better, performance than the access using a shift and
logic operators. Both versions have been implemented, and can be chosen at run-time, for
16B, 8B, and 4B parallelism.

Table 2.2: Arithmetic instructions

Compute Capability
Arithmetic instruction & throughput 2.0 2.1 3.0, 3.2 3.5, 3.7 5.0, 5.2 5.3 6.0 6.1 6.2
32-bit floating-point add, multiply, multiply-add 32 48 192 192 128 128 64 128 128
32-bit integer shift 16 16 32 64 64 64 32 64 64
32-bit bitwise AND, OR, XOR 32 48 160 160 128 128 64 128 128
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2.6.2 8B and 4B parallelism

In this version each pair of threads (8B parallelism), or each four threads (4B parallelism),
share the same state. We declare the state as external shared memory and allocate enough
memory for the execution before the kernel is launched. Below is the code for two rounds
of a 4B version, note how syncthreads() is used before the beginning of each round and
conditional brackets are used to split the code corresponding to each one of the threads
that work with the same block.

extern __shared__ uint32_t state[];

// initialize state variables (s0p, s1p, s2p, s3p, ...)

// to point to shared memory

// ti = ... // thread id: 0, 1, 2, or 3

// initial round

...

// round 1

__syncthreads();

if(valid_thread && ti == 0) {

t0[sti] = T0[s0p[0]] ^ T1[s1p[1]] ^ T2[s2p[2]] ^ T3[s3p[3]] ^ k[4];

}

else if(valid_thread && ti == 1) {

t1[sti] = T0[s1p[0]] ^ T1[s2p[1]] ^ T2[s3p[2]] ^ T3[s0p[3]] ^ k[5];

}

else if(valid_thread && ti == 2) {

t2[sti] = T0[s2p[0]] ^ T1[s3p[1]] ^ T2[s0p[2]] ^ T3[s1p[3]] ^ k[6];

}

else if(valid_thread && ti == 3) {

t3[sti] = T0[s3p[0]] ^ T1[s0p[1]] ^ T2[s1p[2]] ^ T3[s2p[3]] ^ k[7];

}

// round 2

__syncthreads();

if(valid_thread && ti == 0) {

s0[sti] = T0[t0p[0]] ^ T1[t1p[1]] ^ T2[t2p[2]] ^ T3[t3p[3]] ^ k[8];

}

else if(valid_thread && ti == 1) {

s1[sti] = T0[t1p[0]] ^ T1[t2p[1]] ^ T2[t3p[2]] ^ T3[t0p[3]] ^ k[9];

}

if(valid_thread && ti == 2) {

s2[sti] = T0[t2p[0]] ^ T1[t3p[1]] ^ T2[t0p[2]] ^ T3[t1p[3]] ^ k[10];

}

if(valid_thread && ti == 3) {

s3[sti] = T0[t3p[0]] ^ T1[t0p[1]] ^ T2[t1p[2]] ^ T3[t2p[3]] ^ k[11];

}

2.6.3 1B parallelism

This version is similar to a 4B/8B implementation that access each byte of the state with
a byte pointer. This implementation only operates with bytes. Only 8 bits of the 32 bits
registers are used for computation, a waste of potential which is expected to give poor
results compared to the previous implementations. In this case, we not only access the
state with byte pointers s0p[0], s0p[1], s0p[2], s0p[3], ... but also access to the tables Tn
and key k with a byte pointer (uint8 t*).
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__global__ void __cuda_aes_1b_encrypt__(

...

uint8_t* k, // i-th entry bytes from k [i*4+0] to k [i*4+15]

uint8_t* T0, // i-th entry bytes from T0[i*4+0] to T0[i*4+15]

uint8_t* T1, // i-th entry bytes from T1[i*4+0] to T1[i*4+15]

uint8_t* T2, // i-th entry bytes from T2[i*4+0] to T2[i*4+15]

uint8_t* T3 // i-th entry bytes from T3[i*4+0] to T3[i*4+15]

){

...

/* S0 = ... */

if(valid_thread && ti == 0) { // compute the first byte out of four of s0

s0p[0] = T0[s0p[0]*4+0] ^ T1[s1p[1]*4+0] ^ T2[s2p[2]*4+0] ^ T3[s3p[3]*4+0] ^

k[4*((round_number)*4)+0];

}

else if(valid_thread && ti == 1) { // compute the second byte out of four of s0

s0p[1] = T0[s0p[0]*4+1] ^ T1[s1p[1]*4+1] ^ T2[s2p[2]*4+1] ^ T3[s3p[3]*4+1] ^

k[4*((round_number)*4)+1];

}

else if(valid_thread && ti == 2) { // compute the third byte out of four of s0

s0p[2] = T0[s0p[0]*4+2] ^ T1[s1p[1]*4+2] ^ T2[s2p[2]*4+2] ^ T3[s3p[3]*4+2] ^

k[4*((round_number)*4)+2];

}

else if(valid_thread && ti == 3) { // compute the fourth byte out of four of s0

s0p[3] = T0[s0p[0]*4+3] ^ T1[s1p[1]*4+3] ^ T2[s2p[2]*4+3] ^ T3[s3p[3]*4+3] ^

k[4*((round_number)*4)+3];

}

/* S1 = ... */

/* S2 = ... */

/* S3 = ... */

2.7 Random access

As it is explained in sec. 1.1.2, it is possible to decipher specific regions of the ciphertext
without having to decipher it entirely. Paracrypt permit the user to select the region of
bytes that he wants to decrypt, if the user is dealing with big files and it is only interested
in reading parts of the file contents this functionality can save him considerable amounts
of time. The feature is implemented in the BlockIO class. The class constructor can take
two optional arguments, begin and end (see fig. 2.1), to indicate the indexes of the first
and last bytes the user wants to retrieve. Then, when the read method is called, a the IO
object start by returning a chunk whose first block is the entire block (bytes preceding the
begin byte are not left out) that contain the begin byte. The same thing happens when
the last chunk is returned, the last block that contains the end byte is returned entirely so
that the cipher that work with entire blocks can operate successfully. Finally, when write
method is called, the class is intelligent enough to only write to the resultant decrypted
file the bytes the user has selected, discarding others. Below (fig. 2.3) the reader can find
an example where only bytes from 23 to 32 (included) are decrypted from a total of 64
bytes: to obtain these 12 bytes only two (blocks 2 and 3) out of four blocks (from 1 to 4)
have to be decrypted.
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Figure 2.3: Random access example

2.8 Modes of operation

In addition to the basic ECB mode, CBC, CFB, and CTR modes have been implemented.
Since CBC and CFB encryption is not parallelizable (sec. 1.1.2), only decryption is sup-
ported for these two modes. CBC and CFB decryption has been tested to decipher data
previously ciphered with OpenSSL. CTR mode support both encryption and decryption
and only need (in the same way CFB only needs) the encryption kernels and encryption
tables to work properly (tag. ref.).

2.8.1 CBC

To implement the CBC mode we include an additional last step in the original kernel in
which we XOR each block with the previous block or with the initialization vector for
the first block as is described in the CBC decryption diagram (fig. 1.4). The problem is
that, since data is processed in-place for efficiency purposes, the state i (in local memory)
cannot be overwritten until threads that compute the CBC step for the next block i+ 1
have also finished. The syncthreads() CUDA function can only be used to synchronize
threads in the same block so that they not overwrite each other data before each one has
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finished reading the previous block i− 1. There is no form of synchronization between
blocks that does not affect performance (e.g. using heavy synchronization methods such
as cudaDeviceSynchronize()), for this reason, when we copy the blocks of data to the GPU
we also transfer an additional read-only copy of each last cipher-block (these copies are
referred as neighbors in the source code) processed in each block of threads. By doing
this we provide “untouched” versions of these blocks of data that are assured to not have
suffered any modifications by the time they are accessed from another thread of blocks.
Figure 2.4 illustrates this concept for a grid of dimension 4x4 and 16B parallelism (one
thread per cipher-block).

Figure 2.4: Chain/feedback modes and neighbors

The following section of code for the CBC mode follows the previous diagram. The CBC
section is included just before results are saved in global memory. The first thread in the
grid (in the first thread in the first thread-block: bi == 0) uses the initialization vector,
the first thread of each subsequent block uses a neighbor, and other threads access to the
previous block that is processed by another thread of its same thread-block. Note how we
include new m, iv, and neigh parameters to detect which mode of operation is being used
and, in case of CBC and CFB, access to the neighbor blocks.

__global__ void __cuda_aes_16b_decrypt__(

const paracrypt::BlockCipher::Mode m,

unsigned int n,

uint32_t* d,

uint32_t* neigh,

uint32_t* iv,

uint32_t* k,

const int key_bits,

uint32_t* T0,

uint32_t* T1,

uint32_t* T2,

uint32_t* T3,

uint8_t* T4

)

{

uint32_t bi = ((blockIdx.x * blockDim.x) + threadIdx.x);
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...

if(m == paracrypt::BlockCipher::CBC) {

uint32_t c0,c1,c2,c3;

if(bi == 0) {

// there is no previous block - use initialization vector

c0 = iv[0];

c1 = iv[1];

c2 = iv[2];

c3 = iv[3];

} else {

// previous block

if(threadIdx.x == 0) {

// previous cipher-block is in another

// thread-block so we cannot __syncthreads()

// to ensure the data we access is not

// already overwritten

int np = (blockIdx.x*4)-4;

c0 = neigh[np ];

c1 = neigh[np+1];

c2 = neigh[np+2];

c3 = neigh[np+3];

}

else {

c0 = d[p-4];

c1 = d[p-3];

c2 = d[p-2];

c3 = d[p-1];

}

}

s0 ^= c0;

s1 ^= c1;

s2 ^= c2;

s3 ^= c3;

// sync. before saving result

// and overwriting data

__syncthreads();

}

if(bi < n) {

// save result

d[p] = s0;

d[p+1] = s1;

d[p+2] = s2;

d[p+3] = s3;

}

}

2.8.2 CFB

The code for the CFB mode is very similar to the CBC section with some slight differ-
ences. The CFB method uses the encryption cipher function so in this case the section is
located in the cuda aes encrypt kernel. In addition, as seen in fig. 1.6, the encryption
input is the previous cipher-text so we have to create a first CFB section for the initial
round step where the previous cipher-text block is combined with the first round-key. The
IV and neighbors are used in the same way as in the CBC mode. Finally we include an
additional XOR with the ciphertext before data is saved to global memory.
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__global__ void __cuda_aes_16b_encrypt__(

const paracrypt::BlockCipher::Mode m,

unsigned int n,

uint32_t* d,

uint32_t* neigh,

uint32_t* iv,

uint32_t* k,

const int key_bits,

uint32_t* T0,

uint32_t* T1,

uint32_t* T2,

uint32_t* T3

)

{

uint32_t bi = ((blockIdx.x * blockDim.x) + threadIdx.x); // block index

...

if(m == paracrypt::BlockCipher::CFB) {

if(bi == 0) {

s0 = iv[0] ^ k[0];

s1 = iv[1] ^ k[1];

s2 = iv[2] ^ k[2];

s3 = iv[3] ^ k[3];

}

else {

if(threadIdx.x == 0) {

int np = (blockIdx.x*4)-4;

s0 = neigh[np ] ^ k[0];

s1 = neigh[np+1] ^ k[1];

s2 = neigh[np+2] ^ k[2];

s3 = neigh[np+3] ^ k[3];

}

else {

s0 = d[p-4] ^ k[0];

s1 = d[p-3] ^ k[1];

s2 = d[p-2] ^ k[2];

s3 = d[p-1] ^ k[3];

}

}

}

else {

// ECB initial round

}

... // Encryption rounds

if(m == paracrypt::BlockCipher::CFB){

s0 ^= d[p ];

s1 ^= d[p+1];

s2 ^= d[p+2];

s3 ^= d[p+3];

}

d[p] = s0;

d[p+1] = s1;

d[p+2] = s2;

d[p+3] = s3;

}

2.8.3 CTR

In the counter mode we add an additional section at the beginning of the encryption cipher
function as a substitution for the initial AES round. Rather than combining the first-round
expanded key with data, it is combined with a counter. For performance reasons, instead
of an incrementing 128-bit counter we use a 32-bit counter defined by the cipher-block
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index that is XORed with each of the four 32-bit words of the expanded key. For security
reasons, the counter its also combined with the initialization vector words. Finally another
section at the end of the encryption function has to be included as happens with the CFB
mode, we can reuse the CFB code adding a check in the conditional if.

__global__ void __cuda_aes_16b_encrypt__(

const paracrypt::BlockCipher::Mode m,

unsigned int n,

uint32_t* d,

uint32_t* neigh,

uint32_t* iv,

uint32_t* k,

const int key_bits,

uint32_t* T0,

uint32_t* T1,

uint32_t* T2,

uint32_t* T3

)

{

uint32_t bi = ((blockIdx.x * blockDim.x) + threadIdx.x); // block index

...

if(m == paracrypt::BlockCipher::CTR) {

s0 = bi ^ iv[0] ^ k[0];

s1 = bi ^ iv[1] ^ k[1];

s2 = bi ^ iv[2] ^ k[2];

s3 = bi ^ iv[3] ^ k[3];

}

...

if(

m == paracrypt::BlockCipher::CFB ||

m == paracrypt::BlockCipher::CTR

){

s0 ^= d[p ];

s1 ^= d[p+1];

s2 ^= d[p+2];

s3 ^= d[p+3];

}

d[p] = s0;

d[p+1] = s1;

d[p+2] = s2;

d[p+3] = s3;

}

We also include offset variable for the counter for data that cannot be processed in a single
kernel execution (or for data processed with multiple kernels in parallel), for example,
when the input file is bigger than the staging area. The offset variable permit to consequent
kernels to begin at the correct offset (the cipher-block index) and not at the counter zero.

__global__ void __cuda_aes_16b_encrypt__(

const paracrypt::BlockCipher::Mode m,

unsigned int n,

uint32_t offset, // <------------------

uint32_t* d,

uint32_t* neigh,

uint32_t* iv,

uint32_t* k,

const int key_bits,

uint32_t* T0,

uint32_t* T1,

uint32_t* T2,

uint32_t* T3

)

{
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uint32_t bi = ((blockIdx.x * blockDim.x) + threadIdx.x); // block index

...

if(m == paracrypt::BlockCipher::CTR) {

uint32_t global_bi = offset+bi;

s0 = global_bi ^ iv[0] ^ k[0];

s1 = global_bi ^ iv[1] ^ k[1];

s2 = global_bi ^ iv[2] ^ k[2];

s3 = global_bi ^ iv[3] ^ k[3];

}

...

}

2.8.4 Concurrent streams

The data partition in ECB mode is straightforward: chunks of the input file are read,
assigned to a GPU stream to be encrypted or decrypted, and then written at the same file
offset they had been read. For the CTR mode the Launcher has only to set the value of the
counter offset to the block offset of each read chunk. However, the procedure for CBC
and CFB modes is slightly more complex: for the computation of each i plaintext it is
needed to access both actual i and previous i− 1 ciphertext blocks. A CBC/CFB cipher
(fig. 2.5) can be decomposed in multiple ciphers to form a chain where the IV of each
subsequent decryption is the last block assigned to his predecessor as is illustrated in fig
2.6. The Launcher class is able to form this chain when it detects CBC or CFB modes are
being used.

Figure 2.5: Single cipher

Figure 2.6: Equivalent chain of ciphers
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CHAPTER 3

Performances

Performance results have been generated with a Bash script that creates files with dif-
ferent sizes up to 4 GB and then executes different configurations for encryption and
decryption with Paracrypt and OpenSSL command line utilities. Real time is measured
in nanoseconds and averaged for multiple executions in order to obtain more accurate re-
sults. Increasingly small files are averaged more times to assure they run for a total time
comparable to the time ran by bigger files. The output generated by the Bash script is a
set of raw files containing in each row the number of bytes encrypted or decrypted and
the real time it took to complete the operation. A Python script is used to read the raw
files, plot the results with matplotlib, and generate .csv comparative tables. Performances
correspond to a Linux system with a GeForce GTX 780 and a solid state drive (details
available in appendix A).

3.1 Paralellism

It has been surprising to discover that the level of parallelism with which AES has been
implemented has not been an important factor in performance contrary to a maximum im-
provement of 1307% from a 16B implementation against a 1B implementation described
in AES encryption implementation on CUDA GPU and its analysis by Keisuke Iwai et al
[33]. As can be seen in fig. 3.1 the 1B implementation that was expected to work much
worse than the others (sec. 2.6) only does so for files smaller than 30 MB. We thought
that 1B implementation higher level of occupancy (more threads) could result in better
performance with lower files, but this does not seem to be the case as we have obtained
results proving the contrary. In the 200-to-250 MB/s performance peak the results seem to
indicate, as we initially thought, that the performance decreases as the level of parallelism
increases as a consequence of having to use more synchronization. However, for files
larger than 125 MB the performance differences are negligible, probably because there
are more important critical factors and bottlenecks that hide level of parallelism possible
performance differences (most likely the drive act as a bottleneck).
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Figure 3.1: Performance comparison between AES levels of paralelism

It has been possible to overlap data transferences and computation in ECB and CTR
modes as can be seen in fig. 3.3 where 16 streams are used (our GPU supports 16 kernels
in parllel). We have used the NVTX library to mark in the NVIDIA Visual Profiler the
time consumed in IO operations by the read and write threads (marked in green at fig.
3.4). However as can be seen in figure 3.4, the same level of overlapping can be achieved
with only four threads. It is very difficult to overlap data with more than four streams
[44, pp. 24], for this reason, our implementation use a limit of four streams per GPU by
default: figure shows how 4 streams are enough to obtain a slight improvement in perfor-
mance, 6%, against 1 stream (no overlap) and doesn’t fall too behind the 7% average
performance improvement with more streams.

MB/s per file size 4000 MB 2000 MB 1000 MB 500 MB 250 MB 125 MB 63 MB 31 MB 16 MB average delta 1-stream
1-stream 110.42 85.27 85.09 88.02 101.91 123.1 205.73 127.58 73.56 111.18 0 %
2-stream 118.02 87.47 90.58 93.26 99.78 122.05 233.12 134.14 75.55 117.10 5.32 %
4-stream 116.73 88.24 90.11 91.68 97.37 129.75 235.95 134.22 76.11 117.79 5.94 %
8-stream 115.69 87.52 89.41 93.14 104.41 129.82 240.18 135.49 76 119.07 7.09 %

unlimited-streams 117.5 87.7 90.73 94.06 106.11 130.43 236.07 135 76.4 119.33 7.32 %

Figure 3.2: Performance using different number of streams
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Figure 3.3: Parallelism with sixteen streams

Figure 3.4: Parallelism with four streams
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When we operate with small files overlapping does not occur. In fig. 3.5, for example,
it is shown how data transferences do not appear at the same time kernels computation
appears in the different streams for a 1.6 KB file.

Figure 3.5: Profile of a small file

After profiling CBC and CFB modes (fig. 3.6) we have discovered that the use of sep-
arated memory transferences operations for the initialization vectors and neighbors has
resulted in the breakage of overlapping. See section 4.1.1 to discover how this problem
could be fixed.

Figure 3.6: CBC breakage of overlapping
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Finally, the results show a decrease of performance (fig. 3.13) when operations are fin-
ished out-of-order (sec. 2.2). The reason for these results probably stems from the fact
that operations have to be issued in a determined order so that the queue scheduler can
overlap operations. The issue order is very important and it’s alteration could generate
regions of the time-line without overlapping. In any case, the performance differences are
almost non-existent. The in-order implementation preferred for its simplicity and because
does not need to use busy-wait in the host.

Figure 3.7: Performance of out-of-order operations

3.2 Memory

Changes in memory configurations does not show any drastic effects in performance re-
sults neither. We have run the experimental tests to compare the use of constant memory
3.8 for the cipher round key and lookup tables in 16B, 8B, 4B, and 1B implementations
and obtained very similar results. Keisuke Iwai et al. results showed a 50% improvement
when using shared memory for the T-tables instead of constant memory in a 16B imple-
mentation. In an attempt to improve Paracrypt performance results an alternative version
of Paracrypt that load the T-tables into shared memory has been developed but, as seen in
fig. 3.9, no extraordinary improvements have been perceived (in fact, worse performance
have been registered with bigger files) maybe because as Qinjian Li et al. [39] explain in
its paper, frequent random access (tables are accessed with bytes from the state that do
not follow any order) to the the lookup tables stored in shared memory cause too many
bank conflicts.
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Figure 3.8: Impact of constant memory in performance

Figure 3.9: Performance of tables stored in shared memory

There are no available CUDA functions to copy data to the device shared memory so
data is loaded to shared variables at the beginning of the kernels. Each thread in a block
of threads is responsible of loading a word of the tables from global memory to shared
memory, then syncthreads() is used to ensure all words are available to all the threads
in the grid.

__shared__ uint32_t sT0[256]; // <--- tables in shared memory

__shared__ uint32_t sT1[256]; // <---

__shared__ uint32_t sT2[256]; // <---

__shared__ uint32_t sT3[256]; // <---

int n_threads_loading;

if(blockDim.x < 256*4) {

n_threads_loading = blockDim.x;

} else {

n_threads_loading = 256*4;

}

if(threadIdx.x < n_threads_loading) {

30



3.2. MEMORY CHAPTER 3. PERFORMANCES

int loadsPerThread = (256*4) / n_threads_loading;

int beginWord = loadsPerThread*threadIdx.x;

for(int i = 0; i < loadsPerThread; i++) {

int wi = i+beginWord;

if(wi < 256) {

sT0[wi] = T0_32bits[wi];

} else if(wi < 256*2) {

sT1[wi%256] = T1[wi%256];

} else if(wi < 256*3) {

sT2[wi%256] = T2[wi%256];

} else if(wi < 256*4) {

sT3[wi%256] = T3[wi%256];

}

}

}

__syncthreads();

Qinjian Li et al. indicate in his paper [39] that the use of page-locked memory can result
in a poor performance due to the additional time spent in its allocation:

“although the AES encryption and decryption make significant perfor-
mance advance, the bandwidth of PCI-E bus and page-lock memory al-
location cost are vital limitations. It makes the throughput of encryption
and decryption greatly reduced. Even overlapping techniques used, this
problem can’t be solved satisfactorily.”

We have implemented another alternative version where paginated memory is allocated
with malloc() standard function to analyze the results. Fig. show how the extra cost of
pinned memory allocation is surpassed by higher bandwidth performance benefits when
processing larger files.

However the profiler shows that the initialization of the runtime API can take almost the
same time required for data transferences and computation (fig. 3.12 and fig. 3.10). In
the CUDA manual is explained how the runtime API only starts its inilizializiation with
the first call to a CUDA runtime function [15, Sec. 4.29], we have attempted to use a
dummy malloc() at the beginning of the program but have neither obtained performance
improvements (fig 3.11): perhaps it would be possible to initialize the API library in a
separated host thread.

Figure 3.10: Runtime initialization (paginated memory)
Figure 3.11: Dummy malloc
for runtime initialization
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Figure 3.12: Runtime initialization (page locked-memory)

The size of the staging area results also show that allocating both too much (ulimited-
staging) or too few (1MB-staging) memory lead to slower performances. For this reason,
our implementations use a staging area of 8 MB by default - this size has shown to produce
the higher throughput.

MB/s per file size 4 GB 2 GB 1 GB 500 MB 250 MB 125 MB 63 MB average
1MB-staging 113.34 85.87 85.67 91.19 97.45 130.37 200.12 114.85
2MB-staging 116.38 86.32 88.89 90.58 94.11 116.39 221.26 116.27
8MB-staging 118.28 88.12 90.65 93.84 104.55 124.91 240.05 122.91
32MB-staging 117.28 88.24 90.02 93.68 102.07 125.2 234.84 121.61

unlimited-staging 115.87 86.19 88.83 93.45 103.65 126.79 219.67 119.20

Finally, the use of logic operators to access individual bytes in the state (sec. 2.6.1) haven’t
shown almost any difference in performance although 16B and 4B implementations per-
form negligibly better with logic operators.

Figure 3.13: Performance of logic operators to access individual bytes in the state (16B)
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3.3 Comparison made against OpenSSL

Encryption (16B parallelism without integers, without shared memory for T-Boxes, and
with enabled pinned memory) have shown an average speedup 1.55 for files with sizes
greater than 63 MB against OpenSSL CPU implementation without AES-NI support.
Encryption of a 4GB file has registered the maximum speedup of 2.19.

MB/s per file size 4000 MB 2000 MB 1000 MB 500 MB 250 MB 125 MB 63 MB average
openssl-aes-128-ctr 52.09 68.01 66.5 61.93 69.68 85.24 148.48 78.84

paracrypt-aes-128-ctr-16B 113.98 88.23 90.74 94.76 104.02 125.99 237.35 122.15
speedup 118.81 % 29.73 % 36.45 % 53.01 % 49.28 % 47.80 % 59.85 % 54.92 %

Figure 3.14: OpenSSL vs Pararypt encryption

Figure 3.15: OpenSSL and Paracrypt performance with different key sizes
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Decryption (16B parallelism without integers, without shared memory for T-Boxes, and
with enabled pinned memory) has performed slightly worse than encryption. Decryption
modes have shown an average speedup 1.5 for files with sizes greater than 125 MB
against OpenSSL CPU implementation without AES-NI support. Decryption of a 4GB
file has registered the maximum speedup of 1.87.

MB/s per file size 4000 MB 2000 MB 1000 MB 500 MB 250 MB 125 MB average
paracrypt-aes-128-cbc 82.32 83.68 84.44 83.71 84.48 80.27 83.15
paracrypt-aes-128-cfb 81.91 84.76 84.43 82.29 81.75 80.89 82.67

openssl-aes-128-cbc-decryption 45.26 67.75 54.02 50.49 54.77 67.38 56.61
openssl-aes-128-cfb-decryption 42.65 62.46 53.11 48.57 54.68 63.46 54.15
Paracrypt average decryption 82.115 84.22 84.435 83 83.115 80.58 82.91
Openssl average decryption 43.955 65.105 53.565 49.53 54.725 65.42 55.38

decryption speedup 86.81 % 29.36 % 57.63 % 67.57 % 51.87 % 23.17 % 49.70 %

Figure 3.16: OpenSSL vs Pararypt decryption

Figure 3.17: Performance of decryption modes
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CHAPTER 4

Conclusions

In the past, previous attempts were made to implement the AES algorithm in GPUs: be-
fore GPGPU models were adopted, Takeshi from SEGA Corporation implemented AES
encryption and decryption in the GPU with the use of shading programming languages
and OpenGL extensions that yielded slight improvements, about 1.7 times, against the
CPU-based OpenSSL implementation. In contrast, the use of CUDA, a general purpose
GPU programming language, has made easier the development process of Paracrypt. Our
implementation, however, with a maximum encryption speed of 237.35 MB/s need fur-
ther testing to determine if the drive with buffered read speed of 208.27 MB/s is acting as
a bottleneck or further optimization is needed to be up to the mark with previous CUDA
implementations that have reached speeds up to 7.5 GB/s [39]. The aim of the imple-
mentation was to provide the high-demands of throughput that some specialized system
require. Our intentions were to use the implementation in conjunction with fast quan-
tum key distribution (QKD) [48] but we have to seriously question whether the use of
Paracrypt is a viable solution since CPU hardware with AES-NI support can yield com-
parable speedups of 38% for encryption and 37.5% for decryption [43] and be cheaper
to acquire. Further analysis and optimization of our implementation should be made to
reach the level of performance expected from recent CUDA implementations (table 4.1).

Table 4.1: Performance of previous works

Reference Device Language Troughput Year
Cook et al. [34] GeForce3 Ti200 OpenGL 191 KB/s 2005
T. Yamanouchi [12] GeForce 8800 GTS OpenGL 93.5 MB/s 2007
Harrison et al. [35] Geforce 7900GT DirectX9 109 MB/s 2007
Manavski [36] GeForce 8800 GTX CUDA 1 GB/s 2007
Harrison et al. [40] NVIDIA G80 CUDA 864 MB/s 2008
Di Biagio et. al. [37] GeForce 8800 GT CUDA 1.56 GB/s 2009
Nishikawa et. al. [38] GeForce GTX 285 CUDA 781 MB/s 2010
Chonglei Mei et. al. [41] Geforce 9200M CUDA 800 MB/s 2010
Keisuke Iwai et.al. [33] Geforce GTX285 CUDA 4.375 GB/s 2010
Nishikawa et. al. [38] Tesla C2050 CUDA 6.25 GB/s 2011
Qinjian Li et al. [39] Tesla C2050 CUDA 7.5 GB/s 2012
J. Martin [1] GeForce GTX 780 CUDA 237 MB/s 2017

35



4.1. FUTURE WORK CHAPTER 4. CONCLUSIONS

4.1 Future work

4.1.1 Implementation improvements

The problems encountered during the CBC and CFB profiling (sec. 3.1) can be solved
by batching the, currently separated, IV, neighbors, and plaintext/ciphertext transfer op-
erations into a single transfer to the GPU. This eliminates the per-transfer overhead and
ensures that the hardware queues can correctly overlap data and transferences so that ker-
nel concurrency does not break. Additionally, the amount of data transferred between the
host and the GPU can be minimized by directly performing the neighbor copy operations
in GPU code to store them in shared memory instead of generating the neighbours in the
host and then copying to the GPU.

Furthermore, as we explained in sec. 3.1, the out-of-order haven’t showed satisfactory
results. However, the out-of-order functionality still could be improved by using CUDA
callback functions to know in which of the streams an operation has finished instead
of busy-waiting. In any case, it is not recommended to continue the work in this area
because, as we have explained (sec. 3.1), the way and order in which operations are
issued into the streams is highly important to obtain satisfactory concurrency results.

Finally, in our implementation only depth-first (fig. 4.1) issue order has been implemented
for kernel concurrency. However, another type of order, breadth-first (fig. 4.2), is also
possible to be implemented. The issue order can make possible to overlap both host-
to-device (HD) and device-to-host (DH) transfers with kernels execution [44, pp. 21-
22] depending on the particular GPU architecture the software is being run on. For this
reason, it is advisable to permit the user select in the program options the order in which
operations are enqueued.

Figure 4.1: Depth-first issue order Figure 4.2: Breadth-first issue order

Our implementation also lacks from a key derivation algorithm.
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4.1.2 Additional tests

Despite the fact that we have implemented asynchronous IO operations in the belief they
would be beneficial for performance (sec. 2.2), additional tests have yet to be performed
against a simple blocking IO version to contrast that this functionality is effective. It ought
be possible to select the desired type of IO in the command line tool program options.
Moreover, our implementation has been developed to support multi-GPU cryptography
but hasn’t been yet tested in systems with multiple available GPU devices.

Finally, development branches where shared memory and paginable staging memory are
implemented should be incorporated in the main development branch to add support in
the command line tool for the usage of shared memory for the look-up tables or the usage
of paginable memory for the staging area. By doing this, it will be easier to do further
performance tests and determine how to improve the current implementation. The SSD
drive of our machine seem to be acting as a bottleneck so it is important to perform
more tests in environments that can supply higher rates of data while benchmarking
how much PCI-e bandwidth is being used to ascertain if higher speedups against a
CPU version are possible with our implementation.

4.1.3 Other topics

Below is a list of other ways in which our work could be continued:

• An CPU-GPU hibrid implementation that combines both architectures for a higher
throughput [45]. The implementation can make use of the OpenSSL library which
has support for AES-NI to cipher part of the input with the CPU.

• Add support for GCM Authenticated Encryption (see next page). The galois field
multiplication is optimized for CPU and could be reutilized from Crypto++ GCM
source code [46].

• An OpenCL implementation of AES.

• Workload distribution and implementation for multi-GPU heterogeneus enviroments
that, for example, use both AMD and NVidia GPUs.

• Portability concerns: Make sure only standard headers compatible across diferent
OS are being used. Create a build configuration for Windows, favour the use of
Boost portable C++ source libraries against OS specific headers and libraries and
test the successful compilation of Paracrypt in different systems.

• Extend the support to other ciphers.

• Explore the possibility of brute-force attacks with the GPU in both block and stream
ciphers. Even though if the stream cipher keystream generation algorithm is not
paralellizable a brute force attack is possible by generating many keystreams and
trying to find a meaningful decryption.
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Authenticated Encryption

Authenticated Encryption with Associated Data (AEAD), or simply Authenticated En-
cryption (AE), provides not only data confidentiality but also data integrity and authen-
ticity for which the receiver will be able to validate the source of the message as well as
confirm that data is not corrupted and has not been modified by a third party. AEAD pro-
vide authentication with only one pass, saving code and most likely computation. For this
reason, AEAD is a more efficient and secure alternative to generic compositions where
authentication is provided separately [20]. AEAD encrypted data is accompanied with an
additional message authentication code (MAC) resultant of combining a cipher algorithm
and a authentication code algorithm. The Counter with CBC-MAC (CCM) scheme, for
example, combine the CTR mode with a cipher block chaining message authentication
code (CBC-MAC) that is calculated by encrypting the CTR output in CBC mode with
a zero initialization vector and keeping the last block output. However, before the Ga-
lois/Counter Mode (GCM) appeared none of these AEAD algorithms (considering only
those free from intellectual property) could be parallelized, not meeting the criteria for a
solution capable of sustaining high data rates [21]. The GCM combines the CTR mode
with universal hashing (a hash function that guarantees a low number of collisions) over
a binary Galois field and can be efficiently implemented in software using table-driven
operations. While the CTR mode is parallelizable at a block level, the Galois hash func-
tion used for authentication is not. Nonetheless, the Galois authentication code can be
computed incrementally and each Galois field multiplication operation can be performed
in parallel at a bit level, which permits to keep up with a parallel CTR mode.

Figure 4.3: GCM authentication

The GCM authentication tag is calculated by incrementally XORing Galois field multi-
plications multH of the hash key H with each ciphertext resultant of using the PTR mode
starting at the counter sequence 1. The algorithm requires to encrypt two additional blocks
with the cipher block: one to calculate the hash key, a string result of encrypting a 128 bit
zero string block H = E(K,0128), and another to encrypt the nonce and XOR the result in
the final step of the authentication algorithm.
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A. Target machine specifications

1. OS: Ubuntu 14.04.4 LTS 64 bits

kernel: Linux 3.13.0-57-generic (x86 64)

2. CPU: 8x Intel(R) Core(TM) i7 CPU 960 @ 3.20GHz

3. RAM: 18488 MB

4. GPU: GeForce GTX 780

CUDA Capability 3.5

CUDA Cores: 2304

Total Memory: 3072 MB

Memory Interface: 384-bit

Bus Type: PCI Express x16 Gen2

NVIDIA Driver Version: 361.93.02

5. Drive: KINGSTON SV300S37A120G

Model Family: SandForce Driven SSDs

User Capacity: 120 GB

Rotation Rate: Solid State Drive

Timed buffered disk reads*: 626 MB in 3.01 seconds = 208.27 MB/s

6. Compilers:

g++ version 4.8.4 (Ubuntu 4.8.4-2ubuntu1 14.04.3)

* from hdparm manual:

“Buffered disk read displays the speed of reading through the buffer
cache to the disk without any prior caching of data. This measure-
ment is an indication of how fast the drive can sustain sequential
data reads under Linux, without any filesystem overhead. To ensure
accurate measurements, the buffer cache is flushed.”
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